K.Chanda Sekhar, J. Nonlinear Anal. Optim. Vol. 11(7) (2020), July 2020

Journal of Nonlinear Analysis and Optimization Vol. 11(7) (2020), July 2020 https://ph03.tci-thaijjo.org/

ISSN: 1906-9685

Precision-Aware and Quantization of Lifting Based DWT Hardware Architecture

K.Chanda Sekhar
Associate Professor, Department of ECE
Sri Sai Institute of Technology and Science, Rayachoti
Email: chandra.ssits@gmail.com

Abstract- This paper presents precision-aware approaches and associated hardware implementations for performing the DWT. By implementing BP architecture and also presents DS design methodologies. These methods enable use of an optimal amount of hardware resources in the DWT computation. Experimental measurements of design performance in terms of area, speed, and power for 90-nm complementary metal—oxide semiconductor implementation are presented. Results indicate that BP designs exhibit inherent speed advantages, DS designs require significantly fewer hardware resources with increasing precision and DWT level.

Keywords - Fixed point arithmetic, image coding, very large scale integration (VLSI), wavelet transforms

I. INTRODUCTION

Discrete wavelet transforms (DWT) decomposes image into multiple sub bands of low and high frequency components. Encoding of sub band components leads to compression of image. DWT along with encoding technique represents image information with less number of bits achieving image compression. Image compression finds application in every discipline such as entertainment, medical, defense, commercial and industrial domains. The core of image compression unit is DWT. Other image processing techniques such as image enhancement, image restoration and image filtering also requires DWT and Inverse DWT for Transformations. DWT-IDWT is one of the prominent transformation techniques that are widely used in signal processing and communication applications. DWT-IDWT computes or transforms signal into multiple resolution sub bands.DWT is computationally very intensive and consumes power due to large number of mathematical operations.

Latency and throughput are other major limitations of DWT as there are multiple levels of hierarchy. DWT has traditionally been implemented by convolution. Digit serial or parallel representation of input data further decides the architecture complexity. Such an implementation demands a large number of computations and a large storage that are not desirable for either high-speed or low-power applications. Recently, a lifting-based scheme that often requires far fewer computations has been proposed for the DWT. The main feature of the lifting based DWT scheme is to break up the high pass and low pass filters into a sequence of upper and lower triangular matrices and convert the filter implementation into banded matrix.

ALTHOUGH the JPEG 2000 standard [1] offers considerable coding efficiency and flexibility advantages over the original block DCT-based JPEG standard, it has yet to be widely adopted for several years since the standardization was completed. A key element of JPEG 2000 is the discrete wavelet transform (DWT), which recursively decomposes an input image into subbands with different spatial frequency and orientation. The most commonly used DWT filters in JPEG 2000 are the biorthogonal lossless 5/3 integer and lossy 9/7 floating-point filter banks. In this paper, we focus on the DWT using 9/7 filter, which provides very good compression quality but is particularly challenging to implement with high efficiency due to the irrational nature of the filter coefficients.

II. LITERATURE SURVEY

There are so many literature on the different hardware implementation of the DWT [2]-[6] and novel DWT algorithm there has been much less attention directed to approaches in which the precision of the DWT computation is specifically considered as a design goal. The relatively few treatments of this problem include the work of C. Huang *et al.* in [2], C. Xiong, *et al.* [6], Barua *et al.* in [8], Spiliotopoulos *et al.* in

[9]. The work in [2] provide a verity of hardware implementations to improve and possibly minimize the critical path as well as the memory requirement of the lifting based DWT by flipping conventional lifting structures. The work in [6] presents a novel architecture for 1-d and 2-D DWT by using lifting schemes. This is designed to receive an input and generate an output with the low and high - frequency component of original data being available alternately. The work in [8] considers the effects of quantizing the lifting coefficients of the 9/7 DWT. The number of canonical signed digit (SD) terms for the coefficients are varied, and their effects on the peak signal-to-noise ratio (PSNR) and hardware area/speed are evaluated. The work in [9] conducts a similar analysis with the fixed-point data path fixed to 12 bits of integer and 12 bits of fractional precision, which provides sufficient dynamic range to compute a six-level DWT with over 50-dB PSNR.

However these work, which has been primarily directed to filter coefficients, here we address simultaneous optimization of not only the coefficient precision but also the internal data paths used in their computation and present a solution that is fully generalized with regard to precision, allowing design of a DWT to any desired accuracy. Using this approach, we show that the optimization technique can be used to minimize operand bit widths in a bit-parallel (BP) architecture and to minimize iterations in a digit-serial (DS) architecture. This enables implementations with a significant improvement in hardware resources and/or execution time while also ensuring that overflows are avoided and precision requirements are met.

In addition, we describe a highly flexible overall DWT architecture in which the target precision and number of DWT levels are configurable at run time. In the approach here, the quantization of the DWT coefficients to a target step size is inherently performed through the process of computing the DWT; thereby eliminating the need for a separate quantization step after the DWT is completed.

The paper is organized as follows. Section III, present generic high level architecture of the DWT design. Section IV gives an overview of the lifting-based DWT and JPEG2000 quantization. Section V; describe the design for precision aware BP architecture. Section VI. Presents a configurable DS-DWT architecture that provides flexibility to change DWT level and precision at run time. Section VI.

III. GENERIC HIGH LEVEL ARCHITECTURE

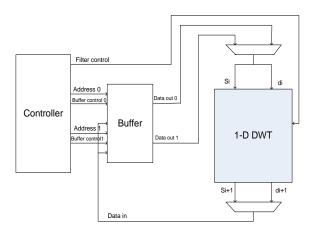


Fig.1 Generic high level architecture of the DWT design

Fig.1 shows the generic high level architecture of the DWT design. The core is the 1-D DWT module, which perform the actual wavelet transform. It can be implemented through a BP, DS architecture, or a run time configurable architecture. The dual- port buffer is large enough to hold two data frames and is used to store the original raw data, intermediate data, and /or the final transformed data. The controller manages the overall operation of design by generating control signals for the buffer (address, write enable, etc) and the filter (target transform level, transform state, iterations for DS operators, etc).

IV. LIFTING BASED DWT

A. Lifting Approach

The lifting scheme based DWT has been included in the upcoming JPEG2000 standard because it reduces the arithmetic complexity [8] of the conventional, convolution based DWT, up to a factor of two.

Fig.2 illustrates the steps for performing a two level DWT on an image. The 1-D DWT is first performed on the rows of the image producing low frequency L1 and high- frequency H1 components. After performing 1-D DWT again on the columns of L1 and H1, the first level of decomposition is completed, and LL1, HL1, LH1, and HH1 are obtained. This process can be recursively applied on LL1 to produce the LL2, HL2, LH2, and HH2 subbands.

The traditional 9/7 DWT was implemented through convolution-based methods, in which low pass and high pass filters are employed. Later Daubenchies and Sweldens showed that DWT can be decomposed into a finite sequence of lifting steps, which provides several advantages including lower computation and memory requirements and easier boundary management [9]. When lifting used, the 9/7 filter can be expressed using the following steps

$$\begin{split} P(z) \! = \! \begin{bmatrix} 1 & \alpha(1+z^{-1}) \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \beta(1+z) & 1 \end{bmatrix} \begin{bmatrix} 1 & \gamma(1+z^{-1}) \\ 0 & 1 \end{bmatrix} \\ \times \begin{bmatrix} 1 & 0 \\ \delta(1+z) & 1 \end{bmatrix} \begin{bmatrix} \zeta & 0 \\ 0 & 1/\zeta \end{bmatrix} \end{split}$$

Where α = -1.586134342, β = -0.5298011854, γ = 0.8829110762, δ = 0.4435068522, and ζ = 1.149604398.

Fig.3 describes the flipping structure by $Haung\ et.al.$ [2] for the lifting-based 1-D DWT. The flipping structure share the same computational complexity with the traditional lifting scheme, it reduces the critical path by flipping computations units with the inverse of multiplier coefficients. Constants C0...........C5 are given by

$$C1 = 1/(\alpha\beta) = 0.7437502472$$

 $C2 = 1/(\beta\gamma) = -0.6680671710$
 $C3 = 1/(\gamma\delta) = 0.6384438531$
 $C4 = \alpha\beta\delta/\zeta = 2.065244244$
 $C5 = \alpha\beta\gamma\delta\zeta = 2.421021152$

B. Quantization

Quantization, involved in image processing, is a lossy compression technique achieved by compressing a range of values to a single quantum value. When the number of discrete symbols in a given stream is reduced, the stream becomes more compressible. For example, reducing the number of colors required to represent a digital image makes it possible to reduce its file size. Specifi

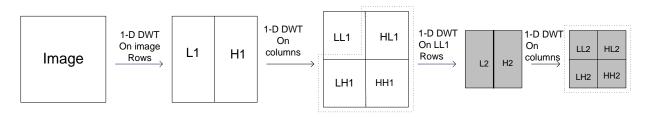


Fig.2 Illustration of two level wavelet decomposition. The dotted portions are the final transformed data

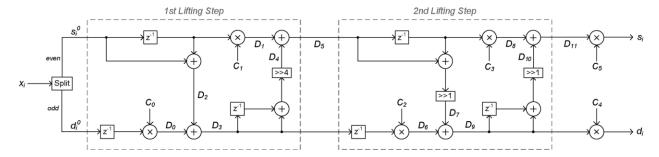


Fig.3 Flipping structure for the lifting based 1-D 9/7 DWT

applications include DCT data quantization in JPEG and DWT data quantization in JPEG 2000.

Quantization is a key element for the lossy 9/7 DWT in achievable compression performance. The JPEG 2000 standard supports uniform dead-zone quantization, as well as trellis coded quantization [8]. In this paper Uniform dead-zone quantization is chosen due to its simplicity and hardware efficiency. This quantization approach uses equally sized bins, except for a quantizer "dead zone" centered at zero containing a bin double the size of the others. For example, using this quantization scheme, with reference to Fig. 2 if HL1, LH1 and HH1 have a precision of n bits, then LL2, HL2, LH2 and HH2 should have a precision of n+1 bit [7].

V. BP DWT DESIGN

It is desirable to minimize the bit-widths for all variables in the data paths, leading to size reductions in tables, and operators such as adders and multipliers. We employ a bit width minimization scheme which minimizes bit-widths while ensuring that the results meet the one ulp error bound requirement. We split the problem of minimizing fixed-point bit-widths into two parts: range analysis followed by precision analysis. The two parts are performed entirely within our MATLAB framework, making use of the finite precision hardware emulation models a numerical approach is taken to tackle the range and precision minimization problems Range analysis involves inspecting the dynamic range and working out the bit-widths of the integer parts. Using insufficient bits for the range can cause overflows or underflows and excessive bits waste valuable hardware resources. The range analysis method uses a simulation-based approach, where each input of the design is supplied with a large set of random numbers, which ranges over the interval of possible values for the particular input, including the extreme values of that interval.

In BP approach computing speed is the primary goal, the design challenge lies in determining the appropriate number of integer and fractional bits to use in representing all the signals utilized during the computation. Her it follows two's complement fixed-point representation is used for all signals. The number of integer bits, fractional bits and the total number of bits of signal z are denoted by IBz, FBz and Bz respectively, where Bz = IBz + FBz.

A. Integer Bit- Width Determination

The IB can be determined by using an approach, which is based on computing the roots of the derivatives of each signal. Since the binary point needs to be aligned for additions, the two addition operands need to share the same IB. Hence, for the 1-D DWT shown in Fig. 3, the following signal pairs need to share the same IB, i.e., (D0,D2), (D1,D4), (D6,D7) and (D8,D10). Practically, this implies that the IB should be set to the larger IB of the two, e.g. IBD0 = IBD2 = (IBD0, IBD2). Furthermore si, di are the final output data.

B. Fractional Bit-Width Optimization

The fractional bit-width optimization is executed in two steps, one is static step based on analytical models to obtain the set of widths, and a dynamic step based on simulation that further

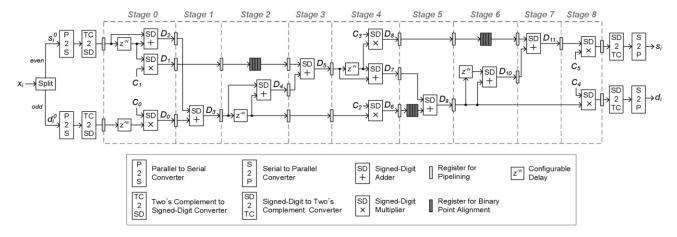


Fig. 4. DS 1-D 9/7 DWT data flow

reduce the bit width using a PSNR delta threshold. The target precision metric (ulp) error criterion, which is a way of specifying the worst case (maximum absolute) error. The static step finds the set of bits that guarantee less than 2-ulp error at the final quantized DWT outputs.

1. Static Optimization: The worst case (maximum absolute error) quantization errors for truncation and round-to-nearest are given by

Truncation:
$$Ez = \max(0, 2^{-FBz} - 2^{FBz'})$$
(1)

Round-to-nearest:
$$Ez = \{0, \quad \text{if } FBz \ge FBz'\} \quad \dots \quad (2)$$

 2^{-FBz-1} , otherwise

Where FBz' is the full precision of unquantized

$$Es_{i} = \max (D_{11}) \times 2^{-FBc5-I} + C5 \times E_{DII} + E_{D11} \times 2^{-FB}_{C5-1} \dots (3)$$

$$+ \max (0, 2^{-FB}_{si} - 2^{-FBc5-FB}_{D11})$$

$$Edi = \max (D9) \times 2^{-FB}_{C4}^{-1} + C4 \times E_{D9} + E_{D9} \times 2^{-FB}_{C4}^{-1} \dots (4)$$

$$+ \max (0, 2^{-FBdi} - 2^{-FBc4-FB}_{D9})$$

These error expressions consider the worst case error bounds at each node and can be recursively derived for any number of DWT levels. The bit widths of the internal data paths are found using the error expressions in conjunction with simulated annealing. Since the quantization scheme of JPEG 2000 uses increasing precision with i=L

VI. DS DWT DESIGN

A key challenge in DS design involves minimizing the number of iterations. For the DS representations used here, we use a radix-2 SD redundant number system. Due to redundancy, SD operations do not propagate carries and hence are able to run in most significant digit first (MSDF) mode (also known as online arithmetic). This MSDF property makes it attractive for the DS DWT approach since it allows for varying the number of iterations to obtain different precision.

Fig. 4 illustrates the DS 1-D 9/7 DWT solution. The incoming two's complement data is first serialized and converted into SD representation. The serial SDs is then passed into the DS DWT, which is partitioned into nine pipeline stages that run in parallel. After the last stage, the DWT-transformed data is converted back into two's complement representation and parallelized into words. This approach reduces the

memory requirement since two's complement occupies half the area of the equivalent SD representation. Both SD addition and SD multiplication produce one digit per cycle, starting from the most significant digit used for the static step is the unit in the last place.

A. Integer Width Determination

As in the BP approach, the goal here is to use the minimum number of integer digits for each signal while avoiding overflow. Moreover, the number of integer digits of the addition operands need to be identical for binary point alignment. The binary point of a digit can be adjusted via increasing or decreasing the number of integer digits. This is easily achievable for the BP case by simple shifting. In MSDF the number of integer digits needs to be adjusted by inserting and removing delay elements, e.g., registers.

B. Minimizing the Number of DS Iterations

In a DS implementation, increasing the number of iterations gives more precision but costs more execution time. The goal of iteration optimization is thus to use the minimum number of iterations while meeting the specified error requirement. This is analogous to determining the minimum number of fractional bits with the direct approach. The worst case error for the DS addition z = x + y is given by

$$Ez = Ex + Ey + \max(0, 2^{-FDz} - 2^{FDx})$$

+ $\max(0, 2^{-FDz} - 2^{-FDy})$ (5)

Where the last two terms are quantization errors due to using a subset of digits of x and y, which is a function of the number of iterations. The worst case error for DS multiplication $z = x \times y$ where is a constant is given by

$$Ez = \max(x) 2^{-\text{FDy-1}} + y \times \max(0, 2^{-\text{FDx}} - 2^{-\text{FDz}'})$$

+ $\max(0, 2^{-\text{FDx}} - 2^{\text{FDx}'}) \times 2^{-\text{FDy-1}}$ (6)

Using the DS addition and multiplication error expressions in (5) and (6), static and dynamic coefficient and iteration optimization are performed.

V. RUN-TIME CONFIGURABLE DS ARCHITECTURE

The BP and digit-serial architectures discussed so far enable optimized computation of a single level of the DWT at a single precision requirement. However, many DWT applications involve multilevel DWT decompositions. Thus, it is of high interest to have a single reconfigurable DWT processor that supports different DWT levels (e.g., levels 1–7) and precision (e.g., precision 2–14) at run time. Varying these parameters provides the ability to vary compression ratios, image quality, and processing time. Adding this flexibility to the BP approach would mean that all of the operators would need to be large enough to support the highest level and precision. When performing a DWT at a low level and/or precision, this involves significant hardware inefficiency. The DS approach is well suited for this reconfigurability as the number of iterations and, thus, the precision can be simply varied at run time as a function of the DWT level.

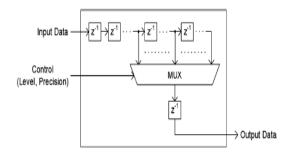


Fig. 5. Configurable shift register used in the run-time configurable design

In order to make the DS approach configurable, the following changes are required.

- 1) Shift registers that need to delay by a word (such as the configurable delay elements in Fig. 4) need to be large enough to support the widest possible (which will most likely be the highest level and precision).
- 2) These shift registers need to be configurable to support different amounts of delays. This is achieved by utilizing a Multiplexer, as illustrated in Fig. 5. The multiplexer taps off various stages of the delay chain, effectively serving as a run-time configurable shift register.
- 3) Extra control circuitry is needed, which indicate correct end of frame and end of line, etc., for different levels and precision.

TABLE. I ${\it COMPARISONS BETWEEN BP AND DS IMPLEMENTATIONS FOR A FOUR-LEVEL 8-BIT DWT }$

Approach	Area	Clock	Processing	Dynamic	Static
		speed	Time	power	power
Bit-	35228	56	7.4	6.8	3.5
parallel					
Digit-	18680	435	29,8	23.5	1.7
Serial					

VI. IMPLEMENTATION RESULTS

The codes are written in verilog language as it is easier than any other HDL language and because of some of its salient features like it allows the descriptions of each module to done mathematically in terms its terminals and external parameters applied to the module.etc. The same has been simulated using the able simulation tool modelsim 6.2. The results in terms of numbers and waveforms are analyzed to get accurate results. One sample window showing simulation results for compression is shown below in figure 4.

Designs are synthesized using Synopsys Design Compiler with the standard-cell library of Infineon 90-nm CMOS technology. Power results are obtained via Synopsys Power Compiler, which performs gate-level power simulation using user supplied data (images).

A. Speed

The BP operators process a word every cycle and DS operators process a word in multiple cycles, DS architectures require more clock cycles. However, DS operators are fast with no carry propagation. Furthermore, the speed of the DS operators is independent of the word size. All DS designs in the figure have a maximum clock speed of 435 MHz In contrast; the operators in BP designs are slower due to carry propagation, which is proportional to the operand bit-width, which in turn is a function of the target precision. The maximum clock speeds of the BP designs range from 41 to 101 MHz the DS exhibits a highly linear behavior with precision and decomposition level. This is primarily due to the constant clock speed. With BP designs, there is a lower rate of increase in execution times with precision and level. Although the DS designs have faster clock speeds, their overall execution times are considerably slower due to their multicycle characteristics.

B. Power

Power dissipation is determined by the combination of static power and dynamic power. Static power largely results from transistor leakage current, whereas dynamic power is primarily due to switching activities for charging and discharging load capacitance.

The dynamic energy consumption is given by

$$E_D - C_L \times V_{DD}^2 \times f \times T$$

Where C_L is the load capacitance, V_{DD} represents the supply voltage, f is the clock frequency, and T is the execution time. Considering constant V_{DD} , the C_L term favors the DS approach due to its low area requirement, but the f and T terms favor the BP approach due to its lower clock speed and processing time. The DS design requires half the area of the BP design, its high clock speed and processing time cause it to consume 12 times more dynamic energy.

The static energy consumption is given by

$$E_S = V_{DD} \times I_S \times T$$

Where V_{DD} represents the supply voltage, I_S is the leakage current, and T is the power-on time. It is shown that the DS approach has a considerable static energy advantage due to its lower area requirement.

To conduct a representative overall energy consumption assessment between the two methods, we consider an image processor on a camera. We assume that when the camera is powered on, the image processor is initially in standby mode (and thus dissipating static power). When the user selects a scene to shoot and presses the shutter, the image processor switches to active mode (and thus dynamic power) to process the image taken by the user. Therefore, applications with high quality and throughput requirements such as high-definition video will be better suited with the BP approach and high precision, whereas applications with lower resolution requirements could be potentially more appropriately handled with a DS approach and lower precision.

C. Area

The area for [6] is constant since the widths of the data paths are kept constant. The area for the proposed approach changes in order to tailor the data paths for the target precision. An interesting observation is that at low precision (below 8 bits), the proposed design occupies considerably less area while providing equal or better image quality. This is because, in contrast to the proposed, which allocates the bits adaptively, the fixed data path approach can lead to bits being wasted (surplus dynamic range, overly precise computations, etc.).

VII. CONCLUSION

In this work precision-aware approaches and associated hardware implementations for performing the DWT are presented. Both BP and DS design methodologies and results have been presented. These methods enable use of an optimal amount of hardware resources in the DWT computation. Moreover, this framework enables quantization, which is traditionally performed after the DWT in algorithms such as JPEG 2000. We have also presented a highly flexible configurable DWT processor and examined the energy and power tradeoffs between the associated BP and DS designs, in particular, highlighting the differing respective roles of static and dynamic power in each. We believe that design methods and architectures such as those presented here play a significant role in the design of future energy- and precision-optimized DWT implementations.

REFERENCES

- [1] M. Rabbani and R. Joshi, "An overview of the JPEG 2000 still image compression standard," Signal Process.: Image Commun., vol. 17, no. 1, pp. 3–48, Jan. 2002.
- [2] C. Huang, P. Tseng, and L. Chen, "Flipping structure: An efficient VLSI architecture for lifting based discrete wavelet transform," *IEEE Trans. Signal Process.*, vol. 52, no. 4, pp. 1080–1089, Apr. 2004
- [3] C. Cheng and K. Parhi, "High-speed VLSI implementation of 2-D discrete wavelet transform," IEEE Trans. Signal Process., vol. 56, no. 1, pp. 393-403, Jan. 2008.
- [4] C. Xiong, J. Tian, and J. Liu, "Efficient architectures for two-dimensional discrete wavelet transform using lifting scheme," *IEEE Trans. Image Process.*, vol. 16, no. 3, pp. 607–614, Mar. 2007.
- [5] S. Barua, K. Kotteri, A. Bell, and J. Carletta, "Optimal quantized lifting coefficients for the 9/7 wavelet," in *Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.*, 2004, vol. 5, pp. 193–196.
- [6] V. Spiliotopoulos, N. Zervas, Y. Andreopoulos, G. Anagnostopoulos, and C. Goutis, "Quantization effect on VLSI implementations for the 9/7 DWT filters," in *Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.*, 2001, vol. 2, pp. 1197–1200.
- [7] M. Weeks, "Precision for 2-D discrete wavelet transform processors," in Proc. IEEE Workshop Signal Process. Syst., 2000, pp. 80–89.
- [8] M. Marcellin, M. Lepley, A. Bilgin, T. Flohr, T. Chinen, and J. Kasner, "An overview of quantization in JPEG 2000," *Signal Process.: Image Commun.*, vol. 17, no. 1, pp. 73–84, Jan. 2002.
- [9] T. Acharya and C. Chakrabarti, "A survey on lifting-based discrete wavelet transform architectures," J. VLSI Signal Process. vol. 42, no. 3, pp. 321–339, Mar. 2006
- [10] Dong-U Lee, *Member, IEEE*, Lok-Won Kim, *Student Member, IEEE*, and John D. Villasenor, *Senior* Member "precision aware self quantizing hardware architecture for DWT", *in proc IEEE Trans. Image processing*, VOL. 21, NO. 2, February 2012