
1
 CH.SURESH KUMAR,

2 Dr. DHYAN CHANDRA YADAV,
3 Dr. B. GOBINATHAN, . Nonlinear Anal. Optim. Vol. 13(10) (2022), October 2022

Journal of Nonlinear Analysis and Optimization

Vol. 13(10) (2022), October 2022

https://ph03.tci-thaijjo.org/

ISSN : 1906-9685

 J.Nonlinear Anal.

 Optim

IMPLEMENTATION OF ALGORITHMS FOR INCREMENTAL MAINTENANCE OF A

MATERIALIZED VIEW SELECTION AND MAINTENANCE IN DATA

WAREHOUSING ENVIRONMENT

1
 CH.SURESH KUMAR , RESEARCH SCHOLAR, JS UNIVERSITY, SHIKOHABAD, UP,

2 Dr. DHYAN CHANDRA YADAV, PROFESSOR & SUPERVISOR, JS UNIVERSITY, SHIKOHABAD,

UP,
3 Dr. B. GOBINATHAN , CO SUPERVISOR & PROFESSOR COMPUTER SCIENCE AND

ENGINEERING, JAYA ENGINEERING COLLEGE, C.T.H ROAD,PRAKASH

NAGAR,THIRUNINRAVUR 602 024.

ABSTRACT-

A view is a derived relation defined in terms of base relations. A view can be materialized by

storing its extent in the database. An index can be made of these views and access to materialized

view is much faster that recomposing the view from scratch. A Data Warehouse stores large amount

of information collected from a different data sources. In order to speed up query processing,

warehouse usually contains a large number of materialized views. When the data sources are

updated, the views need to be updated. The process of keeping view up to date called as materialize

view maintenance. Accessing base relations for view maintenance can be difficult, because the

relations may be being used by users. Therefore materialize view maintenance in data warehousing

is an important issue. For these reasons, the issue of self- maintainability of the view is an important

issue in data warehousing. In this paper we have shown that a materialized view can be maintained

without accessing the view itself by materializing additional relations at the data warehouse site.

1
 CH.SURESH KUMAR,

2 Dr. DHYAN CHANDRA YADAV,
3 Dr. B. GOBINATHAN, . Nonlinear Anal. Optim. Vol. 13(10) (2022), October 2022

Journal of Nonlinear Analysis and Optimization

Vol. 13(10) (2022), October 2022

https://ph03.tci-thaijjo.org/

ISSN : 1906-9685

 J.Nonlinear Anal.

 Optim

Keywords: optimized view, ETL, incremental maintenance, view maintenance process, DMWS,

view synchronization, expression tree.

INTRODUCTION

it has been observed that in most typical data analysis and data mining applications, timeliness and

interactivity are more important considerations than accuracy; thus, data analysts are often willing

to overlook small inaccuracies in the answer, provided that the answer can be obtained fast enough.

This observation has been the primary driving force behind the recent development of approximate

query processing techniques for aggregation queries in traditional databases and decision support

systems [4], [5]. Numerous approximate query processing techniques have been developed: The

most popular ones are based on random sampling, where a small random sample of the rows of the

database is drawn, the query is executed on this small sample, and the results are extrapolated to

the whole database. In addition to simplicity of implementation, random sampling has the

compelling advantage that, in addition to an estimate of the aggregate, one can also provide

confidence intervals of the error, with high probability. Broadly, two types of sampling-based

approaches have been investigated: 1) pre-computed samples, where a random sample is pre-

computed by scanning the database and the same sample is reused for several queries and 2) online

samples, where the sample is drawn “on the fly” upon encountering a query. So the selection of

these random samples in distributed environments for query processing is addressed in [6]. Data

warehouses (DW) [6] are built by gathering information from data sources and integrating it into

one virtual repository customized to users’ needs. One important task of a Data Warehouse

Management System (DWMS) is to maintain the materialized view upon changes of the data

sources, since frequent updates are common for most data sources. In addition, the requirements of

a data source are likely to change during its life-cycle, which may force schema changes for the data

source. A schema change could occur for numerous other reasons, including design errors, the

addition of new functionalities and even new developments in the modeled application domain.

Even in fairly standard business applications, rapid schema changes have been observed. In [10],

significant changes (about 59% of attributes on the average) were reported for seven different

applications over relational databases. A similar report can also be found in [15]. These

1
 CH.SURESH KUMAR,

2 Dr. DHYAN CHANDRA YADAV,
3 Dr. B. GOBINATHAN, . Nonlinear Anal. Optim. Vol. 13(10) (2022), October 2022

Journal of Nonlinear Analysis and Optimization

Vol. 13(10) (2022), October 2022

https://ph03.tci-thaijjo.org/

ISSN : 1906-9685

 J.Nonlinear Anal.

 Optim

applications ranged from project tracking, sales management, to government administration.

In situations that real-time refreshment of the data ware-house content is not critical; changes to

the sources are usually buffered and propagated periodically such as once a day to refresh the view

extent. Two benefits are possible. One is to gain better maintenance performance. The other is that

there are less conflicts with DW read sessions. In a data update only environment, most view

maintenance (VM) algorithms proposed in the literature [17, 1, 14] group the updates from the

same relation and maintain such a large delta change in a batch fashion. However, these algorithms

would fail whenever source schema changes occur, which are also common as stated above. One

obvious reason is that the data updates in this group may be schema inconsistent with each other

if there are some schema changes in between. On the other hand, work has begun on incorporating.

source schema changes into the data warehouse, namely, view synchronization (VS) [8] aims at

rewriting the DW view definition when the source schema has been changed. To handle the delete

of any schema information of a data source, VS tries to locate an alternative source for replacement

to keep the new view semantically as close to the original view as possible. Thereafter, view

adaptation (VA) [12] incrementally adapts the view extent to keep the new view consistent. Such

algorithms are also not sufficient to batch a group of mixed data updates and schema changes, since

there could be a number of schema changes interleaved with some data updates. In this paper, we

propose a solution strategy that is capable of batching a mixture of both source data updates.

1
 CH.SURESH KUMAR,

2 Dr. DHYAN CHANDRA YADAV,
3 Dr. B. GOBINATHAN, . Nonlinear Anal. Optim. Vol. 13(10) (2022), October 2022

Journal of Nonlinear Analysis and Optimization

Vol. 13(10) (2022), October 2022

https://ph03.tci-thaijjo.org/

ISSN : 1906-9685

 J.Nonlinear Anal.

 Optim

DEFINITION OF TERMS

View evaluation can be represented by a tree, called an expression tree[5,9]. An expression tree is

a tree, where the leaf nodes represent base relations and non-leaf nodes represent binary expressions

in the relational algebra. The unary relational algebraic expressions are associated along the edges.

A view or a query is optimized by the query optimizer before executing it. A query optimizer takes

an expression tree as input and produces an output, called an optimized expression tree, which

determines the internal sequence of operations for executing a query. Thus, an optimized expression

tree defines a partial order in which operations must be performed in order to produce the result of

the view. Depth: The depth of leaf nodes, that is data base relations is 0. The depth d of a node is

defined as max(depth of descendents)+1. Height: The height of the optimized expression tree is

defined as the maximum depth of any node in the tree. Given a node i in the expression tree, its

parent is denoted by i, and op(i) and op(i) are the expressions associated with i and i, respectively.

The children of node i are denoted by i’ and i’’ where i’ is a sibling of i’’ and vice versa. IRi denotes

the intermediate result of node i. The auxiliary relation associated with node I is denoted ARi in

the case where only one relation is needed, and by AR1 i and AR2 i when two are needed. The key

of IRi is denoted by Ki , and the keys of IRi’ and IRi’’ are denoted by Ki’ and Ki’’, respectively.

Insertion and deletion of tuples are denoted by and respectively. The symbol δ either an inserted set

or a deleted set of tuples. The instance of a relation, say Ri, before and after an update is denoted

by Ri old and Ri n ew respectively, similiary for an auxiliary relation AR and a materialized view

1
 CH.SURESH KUMAR,

2 Dr. DHYAN CHANDRA YADAV,
3 Dr. B. GOBINATHAN, . Nonlinear Anal. Optim. Vol. 13(10) (2022), October 2022

Journal of Nonlinear Analysis and Optimization

Vol. 13(10) (2022), October 2022

https://ph03.tci-thaijjo.org/

ISSN : 1906-9685

 J.Nonlinear Anal.

 Optim

EXAMPLE & SIMPLIFICATION

Consider a data warehouse for a large research organization which has got many departments and

each department has many research groups. Suppose this data warehouse is collecting data from

four base relations whose schemas are as follows:

R1: emp_rschr(rschr_id,rname,deptno,major) This relation gives the researchers id, name,

department and major.R2:emp_paperpublish(rschrid,paper_id,paper_title,sour ce_of_publiscation,

year_of_publish) This gives researchers id,paper id, paper title, source of publication and year of

publish. R3: emp_manager(rschr_id,deptno) This relation contain one record for each manager and

his department. Assume that each department has one manager. Since a manager is also a researcher,

relation emp_rschr has a tuple for each manager. R4: emp_groupleader(rschr_id,deptno) This

relation contains information about th research group name and who is leading this group. Since a

group leader is also a researcher, relation emp_rshcr has a tuple for each group leader. Suppose a

user of the organization is interested in materializing and maintaining the following view:

‘Researchers other than managers and group leaders along with their departments who have

published more than 10 papers in the year 2010.’ In SQL, it is defined as a sequence of view

definitions: Create view mngr_or_groupleader (rschr_id, deptno) as select rschr_id, deptno from

emp_rschr UNION (select rschr_id, deptno from emp_groupleader)

// This view is for finding manager and group leader Create view rschr_ex_

manager_or_groupleader (rschr_id, deptno) as select reshr_id, deptno from emp_rschr where NOT

EXISTS (select *from mngr_or_grouple ader where emp_rschr.id=mngr_ or_groupleader.id)

//This view is for finding researcher, those are not manager or group leader. Create view

rschrpaperview2010 (rschr_id, paper_id, deptno) as select emp_paperpublish.rschr_id, paper_id,

deptno from rschr_ex_manager_or_group leader, emp_paperpublish where rschr_ex_

manager_or_ group leader.rschr_id=emp_paperpublish.rschr_id and year= ’2010’. //This view

gives the researcher those who have published paper in the year 2010. Create view

rschrpaperview(rschr_id,deptno) as Select rschr_id, deptno from rschrpaper view2010 group by

rschr_id having count(*)>10; // This view gives the researcher who published more than 10

1
 CH.SURESH KUMAR,

2 Dr. DHYAN CHANDRA YADAV,
3 Dr. B. GOBINATHAN, . Nonlinear Anal. Optim. Vol. 13(10) (2022), October 2022

Journal of Nonlinear Analysis and Optimization

Vol. 13(10) (2022), October 2022

https://ph03.tci-thaijjo.org/

ISSN : 1906-9685

 J.Nonlinear Anal.

 Optim

research paper in the year 2010. As base relations are updated, changes representing the researchers

data come into the warehouse. Most warehouse do not apply the changes immediately. Instead,

changes are deferred and applied to the auxiliary relations incrementally. Deferring the changes

allows analysts that query the warehouse to see a consistent snapshot of the data throughout the

day, and can make the maintenance more efficient. Figure 1 shows the optimized expression tree

for the above view. Here, the nodes at leaf level are base relations and non-leaf nodes are

expressions. Each nonleaf node in the tree corresponds to a relational algebraic expression given

above.

Suppose Researchers or Paper_Public relations are updated. In this case we materialize the two

auxiliary relations View2 and View3. The contents of these views are derived while computing the

view first time. By materializing these two auxiliary relations in the warehouse, the view is self-

maintainable along with these auxiliary relations. Suppose new researchers joined the organization,

therefore, one tuple for each new researcher in emp_rschr relation has to be inserted. These

insertions will led to generate tuples that to be inserted in rschr_ex_manager_groupleader. Since

these new researchers have not published any paper at the time of joining, these tuples cannot join

with any tuples of emp_paper_publish, thus there will no change in the materialized views.

Therefore, all auxiliary relations and materialized views are self_maintainable. Now consider

another case where a set of tuples is inserted in emp_paper_publish relation, say R. Then, we first

compute the research paper those are published in year 2010 and then it is join .

1
 CH.SURESH KUMAR,

2 Dr. DHYAN CHANDRA YADAV,
3 Dr. B. GOBINATHAN, . Nonlinear Anal. Optim. Vol. 13(10) (2022), October 2022

Journal of Nonlinear Analysis and Optimization

Vol. 13(10) (2022), October 2022

https://ph03.tci-thaijjo.org/

ISSN : 1906-9685

 J.Nonlinear Anal.

 Optim

PROCEDURE OF MATERIALIZE VIEWS MAINTENANCE

The materialize view maintenance process can be divided into two functions: 1. Propagate and 2.

Refresh. The work of computing the auxiliary relations happens within the propagate function,

which can take place without locking materialize views so that the warehouse can continue to be

made available for querying by analysts. Materialize views are not locked until the refresh function,

during which time the materialize views are updated from the auxiliary relations. The propagate

function involves updating the auxiliary views incrementally from deferred set of changes. The

final auxiliary view represents the net changes to the materialize views due to the changes in the

underlying data sources. The refresh function applies the net changes represented in the final

auxiliary relation to the materialize views. This process carried out after a specific time interval or

when the system has free cycles. So none of the data warehouse users or operations are affected by

the view maintenance process. None of the query has to pay for view maintenance. The materialize

view maintenance process totally hidden by users and running transactions. Whenever an interested

change happens in the underlying data source, simply this desire change is stored in the auxiliary

relations by comparing and joining it with others relations if required. This change is passed to the

higher level auxiliary relations. Again the change is integrated and circulated to final auxiliary

relation. Lastly the change is refreshed into the data warehouse when the refresh trigger is occur.

a) ANALYTICAL COST MODEL

In this section we show the performance results of our materialize view maintenance method.

The results are based on the following cost model.

i. Cost Model

The overall view maintenance cost of materialized views includes the cost of propagate the

changes and the cost of refresh operations. Let V1,V2,….,Vm be the m materialized views.

1
 CH.SURESH KUMAR,

2 Dr. DHYAN CHANDRA YADAV,
3 Dr. B. GOBINATHAN, . Nonlinear Anal. Optim. Vol. 13(10) (2022), October 2022

Journal of Nonlinear Analysis and Optimization

Vol. 13(10) (2022), October 2022

https://ph03.tci-thaijjo.org/

ISSN : 1906-9685

 J.Nonlinear Anal.

 Optim

Let B1, B2,…,Bn be the n base relations and A1,A2,…Ai be the i auxiliary relations. Let fu1

B1 ,…..,fun Bn be the update frequency to the base relations. Let Cij B->A be the cost of

propagating an update on base relation Bi to auxiliary relation Aj and Cjk A->V be the cost of

refresh of auxiliary Aj to materialized view Vk. The overall cost of maintaining the views when

keeping both the materialized views and the auxiliary relations is:

It is obvious that the cost of maintaining the materialized views directly from base relations is

much more than the cost of maintaining materialized views through auxiliary relations.

EVALUATION

To verify the feasibility and effectiveness of our view maintenance strategies and

corresponding optimization framework, we have implemented the proposed techniques using

Oracle 9i. All experiments were performed on a workstation with Pentium D 3.2 GHz processor,

1 GB of memory and 160 GB disks, running Windows XP. Relation R1 contain 500000 records,

R2 contains 25000 records, where as in R3 there are records of individual manager of a

department and in R4 holds the records of group leaders. We considered two types of changes:

Update-Generating changes: Insertions and deletions of an equal number of tuples over existing

researchers and paper publishers. These changes mostly cause updates amongst the existing

tuples in materialized view. Insertion-Generating changes: Insertions over new researchers those

who published certain number of research papers. These changes cause only insert into paper

publish table. The insertion-generating changes are very meaningful since in many data

warehousing applications the only changes to the fact tables are insertions of tuples for new dates,

1
 CH.SURESH KUMAR,

2 Dr. DHYAN CHANDRA YADAV,
3 Dr. B. GOBINATHAN, . Nonlinear Anal. Optim. Vol. 13(10) (2022), October 2022

Journal of Nonlinear Analysis and Optimization

Vol. 13(10) (2022), October 2022

https://ph03.tci-thaijjo.org/

ISSN : 1906-9685

 J.Nonlinear Anal.

 Optim

which leads to insertions into materialized views. Figure 2 shows four graphs illustrating the

performance advantage of using incremental materialized view maintenance method which

uses auxiliary views to store intermediate results. The view maintenance time is split into two

functions propogate and refresh. While computing the

intermediate result the data warehouse is remain free to the user. Figure 2 (a) and (b) plot the

variation in elapsed time as the size of the change set changes(delta relation), for a fixed size 500000

records in emp_rschr relation and 250000 records in emp_paperpublish relation. We found that the

incremental materialize view maintenance using auxiliary relations wins for both types of changes,

but it wins with a greater margin for the update generating changes. The refresh time is going down

by 20% in figure 2(b). Figure 2(c) and (d) plot the variation in elapsed time as the size of the

emp_paperpublish relation (source relation) changes, for a fixed size of 50000 records in change

set(delta relation).

1
 CH.SURESH KUMAR,

2 Dr. DHYAN CHANDRA YADAV,
3 Dr. B. GOBINATHAN, . Nonlinear Anal. Optim. Vol. 13(10) (2022), October 2022

Journal of Nonlinear Analysis and Optimization

Vol. 13(10) (2022), October 2022

https://ph03.tci-thaijjo.org/

ISSN : 1906-9685

 J.Nonlinear Anal.

 Optim

CONCLUSIONS

We have investigated one of the significant problems of a data warehouse, that is, materialized view

maintenance and how to make warehouse materialized views self maintainable without accessing

the data from underlying data sources. The study shows that it is possible to make warehouse views

self maintainable by materializing additional auxiliary relations, which contain intermediate results,

at a data warehouse site. Using efficient incremental materialize view maintenance technique it is

possible to reduce the cost of view maintenance. Proposed materialize view maintenance technique

using auxiliary relation and dividing the maintenance process into two steps: propagate and refresh

require less maintenance time as compared to counting algorithm. Here the propagate function works

implicitly and whenever the data warehouse is ideal the refresh function integrate the data into data

warehouse views. The entire maintenance process is hidden from the data warehouse users.

REFERENCES RÉFÉRENCES REFERENCIAS

1. A Segev and J. Park, “Maintaining Materialised Views in Distributed databases”, In Proceedings

1
 CH.SURESH KUMAR,

2 Dr. DHYAN CHANDRA YADAV,
3 Dr. B. GOBINATHAN, . Nonlinear Anal. Optim. Vol. 13(10) (2022), October 2022

Journal of Nonlinear Analysis and Optimization

Vol. 13(10) (2022), October 2022

https://ph03.tci-thaijjo.org/

ISSN : 1906-9685

 J.Nonlinear Anal.

 Optim

of the IEEE International Conference on Data Engineering, 1989.

2. Segev and W. Fang,” Currency based updates to distributed materialized Views”, In proceedings

of the IEEE International Conference on Data Engineering, 1990.

3. Abdulaziz S. Almazyad & Mohammad Khubeb Siddiqui,” Incremental View Maintenance: An

Algorithmic Approach”, Internatioinal Journal of Electrical & Computer Sciences IJECS- IJENS

Vol. 10, No. 03, 2009.

4. Bin Liu & Elke A. Rundensteiner, ”Optimizing Cyclic Join View Maintenance over Distributed

Data Sources”, IEEE Transactions on Knowledge and Data Engineering, Vol. 18, No. 3, March 2006.

5. D. Agarwal, A. E. Abbadi, A. Singh and T. Yurek, “Efficient View Maintenance at Data

Warehouses”, Proc. ACM SIGMOD, pp. 417-427, 1997.

6. D. Lomet and J. Widom,” Special Issue on Materialized Views and Data Warehousing”, IEEE

Data Engineering Bulletin 18(2), June 1995

7. E. N. Hanson, “A performance analysis of view materialization strategies”, In SIGMOD pages

440-453, 1987.

8. GianLuca Moro and Claudio Sartori,” Incremental View Maintenance on Multi-Source”, In

proceedings of IEEE, 2001.

9. Gray C. H. Yeung and William A. Gruver, “Multi agent Immediate Incremental View

Maintenance for Data

10. Warehouses”, IEEE Transaction on Systems, Man & Cybermetics- Part A: Systems & Human,

Vol. 35, No. 2, March 2005.

11. Hao He, Junyi Xie., Jun Yang, Hai Yu,” Asymmetric Batch Incremental View Maintenance”,

In the Proceedings of the 21st International Conference on Data Engineering, 1084-4627/05, 2005.

12. Heney E. Korth and Abraham Silberschatz, “Database System Concepts”, McGraw Hill, 1986.

13. J. A. Blakeley, P.A. Larson and F. W. Tompa, “Efficient Updating Materialized Views”, Proc.

ACM SIGMOD, pp. 61-71, May 1986.

1
 CH.SURESH KUMAR,

2 Dr. DHYAN CHANDRA YADAV,
3 Dr. B. GOBINATHAN, . Nonlinear Anal. Optim. Vol. 13(10) (2022), October 2022

Journal of Nonlinear Analysis and Optimization

Vol. 13(10) (2022), October 2022

https://ph03.tci-thaijjo.org/

ISSN : 1906-9685

 J.Nonlinear Anal.

 Optim

14. J. Chen, X. Zhang, S. Chen, K. Andreas and E. A. Rundensteiner, “DyDa: Data Warehouse

Maintenance under Fully Concurrent Environments”, Proc. ACM SIGMOD Demo Session, p.619,

2001.

J. Hammer, H. Garcia-Molina, J. Widom, W. Labio & Zhuge, “The Stanford Data Ware housing Project”,

IEEE Data Engineering Bulletin, June1995.

	IMPLEMENTATION OF ALGORITHMS FOR INCREMENTAL MAINTENANCE OF A MATERIALIZED VIEW SELECTION AND MAINTENANCE IN DATA WAREHOUSING ENVIRONMENT
	Keywords: optimized view, ETL, incremental maintenance, view maintenance process, DMWS, view synchronization, expression tree.
	DEFINITION OF TERMS
	EXAMPLE & SIMPLIFICATION
	PROCEDURE OF MATERIALIZE VIEWS MAINTENANCE
	a) ANALYTICAL COST MODEL
	i. Cost Model

	EVALUATION
	CONCLUSIONS
	REFERENCES RÉFÉRENCES REFERENCIAS

