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Abstract—    In this paper we are consuming the total power required to display the image.  For 

this we use the histogram of that image.  The histogram is modified as log based histograms 

that reduce overstretching articrafts of the conventional histogram equalization technique.  

Then we develp a model called power constrained contrast enhancement for consuming the 

power. The objective function in PCCE consists of power term and histogram equalization 

term. Moreover, we extend the proposed algorithm to enhance video sequences, as well as still 

images. Simulation results demonstrate that the proposed algorithm can reduce  power  

consumption  significantly  while improving image contrast and perceptual quality. 

Index  Terms—Contrast  enhancement,  emissive  displays,  histogram equalization  (HE), 
histogram modification  (HM), image enhancement, low-power image processing. 

Due to the rapid development of imaging technology has made it easier to take and process 
digital photographs. However, we often acquire low-quality photographs since lighting 
conditions and imaging systems are not ideal. High contrast is an important quality factor for 
providing better experience of image perception to viewers. Histogram equalization (HE) is 
widely used to enhance low-contrast images. Notice that, in addition to contrast enhancement, 
power saving is also an important issue in various multimedia devices, such as mobile phones 
and televisions. A large portion of power is consumed by display panels in these devices [2], [3], 
and this trend is expected to continue as display sizes are getting larger. 

  To design such a power-constrained contrast-enhancement (PCCE) algorithm, different 
characteristics of display panels should be taken into account. Display panels can be divided into 
emissive displays and non emissive displays  [4]. Cathode-ray  tubes,  plasma  display  panels 
(PDPs),  organic light-emitting  diode (OLED),  and  field  emissive  displays(FED) are emissive 
displays that do not require external light sources, whereas the thin-film transistor liquid crystal 
display (TFT-LCD) is a non emissive one. . Emissive displays have several advantages over non 
emissive ones, including high contrast and low-power consumption. In an emissive display, each 
pixel can be independently driven, and the power consumption of a pixel is proportional to its 
intensity level. Thus, an emissive display generally consumes less power than a nonemissive one. 
Due to these advantages, the OLED and the FED are considered as promising candidates for the 
next-generation display. Although the OLED is now used mainly for small panels in mobile devices, 
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its mass-production technology is being rapidly developed, and larger OLED panels will be  
soon adopted in a wider range of devices. We propose a PCCE algorithm for emissive displays 
based on  HE.  First,  we  develop  a  histogram  modification (HM) scheme,  which  reduces  large  
histogram  values  to  alleviate the contrast overstretching of the conventional HE technique. 

Then, we make a power-consumption model  for  emissive displays and formulate an objective 
function, consisting of the histogram-equalizing term and the power term. To minimize the 
objective function, we employ convex optimization techniques. Furthermore, we extend the 
proposed PCCE algorithm to enhance video sequences. Simulation results shows the required output 
i.e image with high image contrast and good perceptual quality and reduced  power consumption.  

  HE TECHNIQUE 

Many contrast-enhancement techniques have  been  developed. HE is one of the most widely 
adopted approaches to enhance low-contrast images, which makes the histogram of light 
intensities of pixels within an image as uniform as possible. The main objective of  this paper is to 
develop a power-constrained image enhancement framework, rather than to propose a 
sophisticated contrast-enhancement scheme. Thus, the proposed PCCE algorithm adopts the HE 
approach for its simplicity and effectiveness. Here, we first review conventional HE and HM 
techniques and then develop an LHM scheme, on which the proposed PCCE algorithm  
is based. 

HISTOGRAM EQUALIZATION 

In HE, we first obtain the histogram of pixel intensities in an input image. We represent the histogram 
with a column vector h , whose  kth  element  hk denotes the number of pixels with intensity k . 
Then, the probability mass function pk of intensity is calculated by dividing by the total number of 
pixels in the image. In other words  

                                                                                   (1) 

 where  1 denotes the column vector, all elements of which are 1.The cumulative distribution function 
(CDF)   ck    of intensity   k   is then given by 

                                                               (2) 

Let xk denote the transformation function, which maps intensity in the input image to intensity.   xk in the 
output image. In HE, the transformation function is obtained by multiplying the CDF by ck the maximum 
intensity of the output image. For a b-bit image, there are 2

b
=L different  intensity  levels, and the 

transformation function is given by 

                                           Xk = [(L-1)ck+0.5]            (3) 

where[a] is the floor operator, which returns the largest integer smaller   than or equal to . Thus, in (3), is 
rounded off to the nearest integer since output intensities should be integers. Note that b=8 andL-1=255, 

when an 8-bit image is considered. If we ignore the rounding-off operation in (3), we can com- 
bine (2) and (3) into a recurrence equation, i.e., 

   Xk-xk-1 = (L-1)pk for 1 ≤ k ≤ L-1.                  (4) 

With the initial condition x0=(L-1)рα. This can be rewritten in vector notations as 

            Dx= .                      (5) 
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Where D  R
LXL 

 is the differential matrix, i.e., 

 

 

and   is the normalized column vector of , given by 

        (7) 

Histogram Modification 

    The conventional HE algorithm has several drawbacks. First, when a histogram bin has a very large 

value, the transformation function gets an extreme slope. This can cause contrast overstretching, mood 

alteration, or contour artifacts in the output image. Second, particularly for dark images, HE transforms 

very low intensities to brighter intensities, which may boost noise components as well, degrading the 

resulting image quality. Third, the level of contrast enhancement cannot be controlled since the conventional 

HE is a fully automatic algorithm without any parameter. To overcome these drawbacks, many techniques 

have been proposed. One of those is HM  

 In this recent approach to HM, the first step can be expressed  by  a  vector-converting  operation  

m=f(h) where m = [m0,m1,…,mL-1]
t
 denotes  the modified  histogram .Then,  the  desired 

transformation  function X= [x0, x1,…… xL-1]
t
 can be obtained by solving Dx=     (8) 

which is the same HE procedure as in (5), except that    is used instead of where is the normalized column 

vector of m i.e., 

                                                                                  (9) 

 C.  LHM 

We develop an HM scheme using a logarithm function, which is monotonically increasing and can reduce 

large values effectively. In [20], Drago et al. demonstrated that a logarithm function can successfully reduce 

the dynamic ranges of high-dynamic-range images while preserving the details. We exploit this property 

and apply a logarithm function to our HM scheme, which is called LHM.  We use the following logarithm 

function to convert the input histogram value  to a modified histogram value   
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                            (10)  

 Where mk  denotes the maximum element within the input histogram h and µ is the parameter that 

controls the level of HM. As µ gets larger, hk.hmax.10
-µ 

 in (10) becomes a smaller number. Therefore, a 

large µ makes mk almost linearly proportional to hk. Thus, the histogram is less strongly modified. On 

the other hand, as µ gets smaller hmax.10
-µ

, becomes dominant and 

 

                  ⋍                     (11) 

     Consequently mk, becomes a constant regardless of hk, making the modified histogram uniform. In this way, a 

smaller results µ in stronger HM. Fig. 1(a) illustrates how the proposed LHM scheme modifies an input histogram 

according to parameter µ , and Fig. 1(b) plots the corresponding transformation functions, which are obtained by 

solving (8). In this test, the “Door” image in Fig. 1(c) is used as the input image. 
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In the above Fig. 1(d)-(g) compare the output images of the conventional HE algorithm and the 
proposed LHM scheme. On the other hand, the proposed algorithm with µ=5  yields less 
artifacts on the door knob while enhancing the details on the background region. . Therefore, by 
controlling the single parameter  µ , LHM can obtain the transformation function, which varies 
between the identity function and the conventional HE result. 

PCCE algorithm              

        Here, we propose the PCCE algorithm. Fig. 2 shows an overview of the proposed algorithm. We first 

gather the histogram information h from an input image and apply the LHM scheme h to obtain the 

modified histogram m. Without power constraint, we can solve equation       Dx=  in (8) to get the 

transformation function. However, we design an objective function, which consists of power-constraint 

and contrast-enhancement terms. We then express the objective function in terms of variable y = Dx. 
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Based on the convex optimization theory, we find the optimal y that minimizes the objective function. 

Finally, we construct the transformation function x from   y via x=D
-1

y and use x to transform the input 

image to the output image. 

 

 

We model the power consumption in an emissive display panel that is required to display an image. A 

pixel-level power model for an OLED module. According to their experimental results, power P to 

display a single-color pixel can be modeled by   

 

where, R,G and B are the red, green, and blue values of the pixel. Exponent γ is due to the gamma 

correction of the color values in the sRGB format. A typical is γ  2.2. , w0 accounts for static power 

consumption, which is independent of pixel values, and, wr,wg and wb are weighting coefficients that 

express the different characteristics of red, green, and blue sub-pixels. we ignore parameter for static 

power consumption. 

Then, we model the total dissipated power (TDP) for displaying a color image by 

TDP=  

where N denotes the number of pixels in the image and  (Ri,Gi,Bi) denotes the RGB color vector of the 

pixel. The weighting coefficients, wr ,wg and wb, and are inversely proportional to the sub-pixel 

efficiencies, For example, in a particular OLED panel in a mobile phone, the weighting ratios are about 

wr : wg : wb= 70 : 15 : 154 . However, we note that different display panels have different weighting 

coefficients. 

For a grayscale image, the TDP is similarly modeled by  

TDP=  

Where Yi is the gray level of the ith pixel. . Therefore, the TDP in (14) can be compactly written in vector 

notations   
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TDP= =                                (15)  

as where  and h is the histogram vector whose kth element is hk. 

B.  Constrained Optimization Problem 

We save the power in an emissive display by incorporating the power model in (15) into the HE 
procedure. We have two contradictory goals, i.e., we attempt to enhance the image con- 
trast by equalizing the histogram, but we also try to decrease the power consumption by reducing the 
histogram values for large intensities. These goals can be stated as a constrained optimization 
problem, i.e., 

Minimize   

Subject to   

         

                   Dx≥0.                                                                               (16) 

The objective function has two terms , i.e., is  the histogram-

equalizing term in (8) and h
t
Øᵞ(x) is the power term in (15). By minimizing the sum of these two terms, 

we attempt to improve the image contrast and reduce the power consumption simultaneously. There are 

three constraints in our optimization problem in (16). The two equality constraints X0 = 0 and XL-1 = L-

1state that the minimum and maximum intensities should be maintained without changes. The inequality 

constraint Dx≥0 indicates that the transformation function should be monotonic, i.e, xk≥xk-1 for every k. 

Note that a≥0 denotes that all elements in vector a are greater than or equal to 0. 

 Solution to the Optimization Problem: 

Exponent γ in the power term h
t
Øᵞ(x) is due to the gamma correction, and a typical γ  is 2.2. For 

generality, let us assume that γ is any number greater than or equal to 1. Then, the power term x= h
t
Øᵞ(x) 

is a convex function of x, and the problem in (16) becomes a convex optimization problem [21]. Based on 

the convex optimization theory, we develop the PCCE algorithm to yield the optimal solution to the 

problem. According to the minimum-value constraint in (16) x0, is fixed to 0 and is not treated as a 

variable. Thus, the transformation function can be rewritten as X= [x0, x1,…… xL-1]
t
 after removing x0 

from the original x . Similarly, the dimensions of, , h and Øᵞ(x) are reduced to by removing the first 

elements,  

By substituting variable and expressing the maximum- value constraint in terms of, (16) can be 

reformulated as respectively, D and has a reduced size (L-1)X(L-1) by removing the first row and the first 

column. Then, we reformulate the optimization problem by the change of variable y=Dx . Each element 
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in the new variable is the difference between two output-pixel intensities, i.e. yk = xk-xk-1. Thus, y is 

called the differential vector. Then, x = D
-1

y 

, where 

 

By substituting variable and expressing the maximum-value constraint in terms of , (16) can be 

reformulated as x = D
-1

y  

Minimize   

Subject to    

                    y≥0.                                                                                               (18) 

J(y,v,λ)=  

To solve the optimization problem, we define the Lagrangian cost function, i.e., 

                             v λ= [λ0, λ1,…… λL-1]   ϵ  

Are Lagrangian multipliers for the constraints. Then, the optimal can be obtained by solving the Karsh–

Kuhn–Tucker conditions 

 

                                         y≥0                                                                (21) 

                                         λ≥0                                                                (22) 

                                         ۸y=0                                                              (23) 

2(y-  + αγ H ( y)+v1-λ=0                                                (24)     

 

Where 

۸ = diag(λ) and H= diag(h) 

 

We first expand the vector notations in (24) to obtain a system of equations and subtract the the equation 

from the (i+1) one to eliminate v . Then, we have a recursive system, i.e., 

 

        yi+1 =yi+ i+1- i+ hi  

                                       +  for 1≤i≤L-2                       (25)                                                                      
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In the Appendix, we show that all values can be eliminated from the recursion in (25) using (21)–(23) and 

that all yi values can be expressed in terms of a single variable Z. More specifically, 

Each yi is a monotonically increasing function of Z, given by. Then, the remaining step is to determine 

that satisfies the maximum-value constraint in (20). To this end, we form a function, i.e., 

                           f(z) = y-(L-1)= -(L-1)                                                 (26) 

And find a solution to f(Z)=0. Since f(Z) is monotonically increasing, there exists a unique solution to 

f(Z)=0 . In this paper, we employ the secant method to find the unique solution iteratively. Let  denote 

the value of at the the iteration. By applying the secant formula, i.e., 

- f(     n=2,3,….                         (27) 

Iteratively until the convergence, we obtain solution. From, we can compute all elements in y since 

yi=gi(z). Finally, the transformation function x=D
-1

y is the optimal solution to the original problem in 

(16), which enhances the contrast and saves the power consumption simultaneously subject to the 

minimum-value, maximum-value, and monotonic constraints. Parameter in the objective function in (18) 

determines the relative contributions of the histogram-equalizing term  and the power term 

h
t
Øᵞ(D

-1
y). These two terms, however, have different orders of magnitude in general. Whereas y and  

are not affected by the resolution of an input image, histogram values in h depend on the image 

resolution. Moreover, the power term is generally proportional to the average luminance value of the 

input image. It is convenient to compensate the unbalance between the two terms by dividing the power 

term by the image resolution and the average luminance value. More specifically, we change the variable 

by 

 

                                      β = α x                                        (28) 

where isYinput,i the gray level of the pixel in the input image. Then, we control β instead of α . For 

example, Fig. 3 shows the results of the proposed PCCE algorithm at various β values. In this test, the 

“Door” image in Fig. 1(c) is also used as the input image; the LHM µ parameter is set to 5, and is set to γ 

2.2. In Fig. 3(a), when β=0 , the power term is not considered in (18), and we obtain the differential 

vector y=  . As β gets larger, the elements yk for low pixel values k decrease, whereas yk values for high 

k values increase. 
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As shown in Fig. 3(b), these changes in y lower the transformation function, reducing the power 

consumption. A bigger β saves more power. Without the power constraint, the TDP is 9.28X10
9
. At β=5 

and 3, the proposed algorithm reduces the TDP to 3.55X10
9
 and 1.11X10

9
 respectively. In this way, the 

proposed algorithm determines the transformation function that balances the requirements of power 

saving and contrast enhancement optimally. Furthermore, the amount of power saving can be controlled 

by the single parameter β. Specifically, instead of the minimum and maximum-value constraints in (16), 

we can use generalized constraints x0=lmin and xL-1=lmax to derive the transformation function, which 
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maps the input dynamic range [0,L-1] to the output dynamic range [lmin,lmax]. For instance, Fig. 3(b) 

also shows the transformation function with constraints x0=5 and x255=210. Parameter β is set to 2.84 to 

consume the same TDP as the red curve(x0=5, x255=210,β=5) in Fig. 3(b). Comparing the output images 

in Fig. 3(e) and (f), we see that the new constraints reduce the dynamic range and degrade the overall 

contrast. In the remainder of this paper, the original constraints are employed to exploit the full dynamic 

range. 

 PCCE FOR VIDEO SEQUENCE 

We extend the proposed PCCE algorithm to enhance video sequences. The proposed algorithm provides a 

power-reduced   output image using the power-control parameter β. We can apply the proposed algorithm 

with fixed to β   each frame in a video sequence. However, a typical video sequence is composed of 

frames with fluctuating brightness levels. Experiments in Section V-B will show that a bright frame can 

be enhanced with large β to save power aggressively, whereas a dark frame can be severely degraded if its 

overall brightness is reduced further with the same β .Therefore, we develop a scheme that determines β 

adaptively according to the brightness level  of each frame. For each frame, we first set the target power 

consumption TDPout  

TDPin = .  TDP based on the input power consumption TDP and then control parameter 

TDPout to Achieve   TDP. Specifically, we set 

                                           TDPout=k.TDPin      (32)   

Where is the power-reduction ratio Ῡ When k=1, the proposed algorithm saves no power during the 

contrast enhancement. On the other hand, when K is smaller, the proposed algorithm darkens the output 

frame and decreases the power consumption. The power model in indicates that a bright frame consumes 

more power than a dark frame. Therefore, more power saving can be achieved for a brighter frame, and 

the power-reduction ratio K in (32) can be set to a smaller value. On the other hand, the ratio for a dark 

frame should be close to 1 since even a small power reduction may yield poor image quality by reducing 

the contrast further and erasing details. Based on these observations, we set the power-reduction ratio K 

by 

K=                             

Where Ῡ denotes the average gray level of an input frame and ρ is a user-controllable parameter. For a 

bright input frame with high Ῡ, is set to a small value to achieve aggressive power saving. On the 

contrary, for a dark input frame with low   

Ῡ,k is set to be close to 1 to avoid the brightness reduction. To summarize, given an input frame, we 

determine the target power consumption TDPout using   (32) and (33). Then, we find parameter β to 
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achieve TDPout. Since TDPout is inversely proportional to β, we can easily obtain the desired β using the 

bisection method, which iteratively halves a candidate range of the solution into two subdivisions and 

selects the subdivision containing the solution. Thus, in the video enhancement β, is automatically 

determined, and the only power-control parameter is in ρ (33). Note that, for the same Ῡ, larger ρ yields 

smaller k and saves more power. 

 

   

Contrast Enhancement without Power Constraint 

First, we compare the proposed PCCE algorithm without the power constraint (β=0) with the 

conventional HE and HM techniques. Fig. 4 shows the processed images obtained by the conventional 
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HE algorithm, the weighted approximated HE (WAHE) algorithm, and the proposed PCCE algorithm 

(β=0) the proposed algorithm is tested in two ways. In Fig. 4(d), the user-controllable parameter µ for 

LHM in (10) is set to 2, 6.5, 5.5, 6.5, 5, 5.5, 5, and 5 for the eight test images, respectively, to achieve the 

best subjective qualities. On the Other hand, in Fig. 4(e), µ is fixed to 5. For the WAHE results in Fig. 

4(c), parameter g is adapted for each image to achieve the best subjective quality. Fig. 5 shows the 

transformation Functions which are used to obtain the images in Fig. 4. 1http://r0k.us/graphics/Kodak/ 

2http://sipi.usc.edu/database/ We observe from Fig. 4(b) that the conventional HE algorithm causes 

excessive contrast stretching. In the “Moon” image, hidden noises become visible, degrading the image 

quality severely. This noise amplification is due to the steep slope of the transformation function near 

intensity 0, as shown in Fig. 5. The contrast overstretching suppresses the overall brightness of the 

“Beach” image. The transformation function reduces the input-pixel range [0, 150] to the output-pixel 

range [0, 50] by extending the contrast around the input-pixel intensity 170, which corresponds to the 

background area. Also, contour artifacts are observed in “Sunset.” In general, the conventional including 

amplified noises, contour artifacts, detail losses, and mood alteration. Compared with the conventional 

HE, both WAHE and the proposed algorithm reduce artifacts by alleviating abrupt changes in the 

transformation functions, as shown `in Fig. 4(c) and (d). WAHE exploits spatial variance information to 

reduce large histogram values, based on the observation that peaks in histograms usually come from 

background regions. Specifically, WAHE skips repeated pixel intensities during the construction of an 

input histogram to focus on the contrast enhancement of textured regions. Thus, it can enhance object 

details, whereas it may degrade background details. For example, on the “Pagoda” image, WAHE 

improves the contrast of the tower but loses the details in the clouds. Similarly, since the wall in the “Ivy” 

image has small intensity variations, its contrast is not enhanced by WAHE significantly. The proposed 

PCCE algorithm provides comparable or better results than WAHE on all test images, as shown in Fig. 

4(d). On the “Moon, “ “Beach, “ “Sunset, “ “Baboon, “ “Lena, “ and “F-16” images, the proposed 

algorithm and WAHE produce similar results. However, on the “Pagoda” and “Ivy” images, the proposed 

algorithm yields better perceptual quality than WAHE. Notice that the proposed algorithm enhances the 

clouds in “Pagoda” and the patterns on the wall in “Ivy” more clearly. In Fig. 4(e), we fix the LHM 

parameter to 5. Except for slight differences in the “Pagoda” image, the output images with the fixed are 

almost indiscernible from those with the adapted values in Fig. 4(d). Experiments on various other images 

also confirm that  µ=5 is a reliable choice. Therefore, in the following experiments, is set to 5 unless 

otherwise specified. 

       Contrast Enhancement with Power Constraint 
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Next, we evaluate the performance of the proposed PCCE algorithm with the power constraint 

(β>0). Fig. 6 shows the output images obtained by the proposed algorithm at different values. The images 

in Fig. 6(a) are exactly the same as those in Fig. 4(e) β. As gets larger, the overall brightness of the output 

images decreases, but the image contrast is relatively well preserved. Note that the perceptual quality and 

the subjective contrast of the output images at     β = 0.5 are almost the same as those at β=0. In particular, 

when these images are displayed on OLED panels, it is hard to distinguish the case without the power 

constraint β=0 from the case with the power constraint β>0 unless β is set to be very high. Fig. 6(e) shows 

the output images when β has a very high value of 15. Even in this case, the originally bright images 

“Ivy” and “F-16” retain visual details partly, but the other relatively dark images are severely degraded. In 

general β, can be set to a higher number for a brighter image to save power more aggressively. On the 

other hand, for a dark input image, β should be less than 2 for the proposed algorithm to yield good image 

quality.  
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Conclusion 

We have proposed the PCCE algorithm for emissive displays, which can enhance image 

contrast and reduce power consumption. We have made a power-consumption model and have 

formulated an objective function, which consists of the histogram-equalizing term and the power 

term. Specifically, we have stated the power-constrained image enhancement as algorithm to find 

the optimal transformation function. Simulation results have demonstrated that the proposed 
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algorithm can reduce power consumption significantly while yielding satisfactory image quality. 

In this paper, we have employed the simple LHM scheme, which uses the same transformation 

function for all pixels in an image, for the purpose of the contrast enhancement. One of the future 

research issues is to generalize the power-constrained image enhancement framework to 

accommodate more sophisticated contrast-enhancement techniques, such as and, which process 

an input image adaptively based on local characteristics. 
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