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Abstract— In this paper we are consuming the total power required to display the image. For
this we use the histogram of that image. The histogram is modified as log based histograms
that reduce overstretching articrafts of the conventional histogram equalization technique.
Then we develp a model called power constrained contrast enhancement for consuming the
power. The objective function in PCCE consists of power term and histogram equalization
term. Moreover, we extend the proposed algorithm to enhance video sequences, as well as still
images. Simulation results demonstrate that the proposed algorithm can reduce power
consumption significantly while improving image contrast and perceptual quality.

Index Terms—Contrast enhancement, emissive displays, histogram equalization (HE),
histogram modification (HM), image enhancement, low-power image processing.

Due to the rapid development of imaging technology has made it easier to take and process
digital photographs. However, we often aCﬂL_JII’e low-quality photographs since lighting
conditions and imaging systems are not ideal. High contrast is an important quality factor for
providing better experience of image perception to viewers. Histogram equalization (HE) is
widely used to enhance low-contrast images. Notice that, in addition to contrast enhancement,
power saving is also an important issue In various multimedia devices, such as mobile phones
and televisions. A large portion of power is consumed by display panels in these devices [2], [3],
and this trend is expected to continue as display sizes are getting larger.

To design such a power-constrained contrast-enhancement (PCCE) algorithm, different
characteristics of display panels should be taken into account. Display panels can be divided into
emissive displays and non emissive displays [4]. Cathode-ray tubes, plasma display panels
(PDPs), organic light-emitting diode (OLED), and field emissive displays(FED) are emissive
displays that do not require external light sources, whereas the thin-film transistor liquid crystal
display (TFT-LCD) is a non emissive one. . Emissive displays have several advantages over non
emissive ones, including high contrast and low-power consumption. In an emissive display, each
pixel can be independently driven, and the power consumption of a pixel is proportional to its
intensity level. Thus, an emissive display generally consumes less power than a nonemissive one.
Due to these advantages, the OLED and the FED are considered as promising candidates for the
next-generation display. Although the OLED is now used mainly for small panels in mobile devices,
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its mass-production technology is being rapidly developed, and larger OLED panels will be
soon adopted in a wider range of devices. We propose a PCCE algorithm for emissive displays
based on HE. First, we develop a histogram modification (HM) scheme, which reduces large
histogram values to alleviate the contrast overstretching of the conventional HE technique.

Then, we make a power-consumption model for emissive displays and formulate an objective
function, consisting of the histogram-equalizing term and the power term. To minimize the
objective function, we employ convex optimization techniques. Furthermore, we extend the
proposed PCCE algorithm to enhance video sequences. Simulation results shows the required output
i.e image with high image contrast and good perceptual quality and reduced power consumption.

HE TECHNIQUE

Many contrast-enhancement techniques have been developed. HE is one of the most widely
adopted approaches to enhance low-contrast images, which makes the histogram of light
intensities of pixels within an image as uniform as possible. The main objective of this paper is to
develop a power-constrained image enhancement framework, rather than to propose a
sophisticated contrast-enhancement scheme. Thus, the proposed PCCE algorithm adopts the HE
approach for its simplicity and effectiveness. Here, we first review conventional HE and HM
techniques and then develop an LHM scheme, on which the proposed PCCE algorithm
is based.

HISTOGRAM EQUALIZATION

In HE, we first obtain the histogram of pixel intensities in an input image. We represent the histogram
with a column vector h , whose kth element hk denotes the number of pixels with intensity k .
Then, the probability mass function pk of intensity is calculated by dividing by the total number of
pixels in the image. In other words

_ hx
pk - 1rh (1)

where 1 denotes the column vector, all elements of which are 1.The cumulative distribution function
(CDF) ck ofintensity k isthen given by

e = TisoP (2)

Let xk denote the transformation function, which maps intensity in the input image to intensity. xKk in the
output image. In HE, the transformation function is obtained by multiplying the CDF by ck the maximum
intensity of the output image. For a b-bit image, there are 2°=L different intensity levels, and the
transformation function is given by

Xk = [(L-1)ck+0.5] 3)

where[a] is the floor operator, which returns the largest integer smaller than or equal to . Thus, in (3), is
rounded off to the nearest integer since output intensities should be integers. Note that b=8 andL-1=255,

when an 8-bit image is considered. If we ignore the rounding-off operation in (3), we can com-
bine (2) and (3) into a recurrence equation, i.e.,

Xk-xk-1 = (L-1)pk for I <k <L-1. (4)

With the initial condition x0=(L-1)pa. This can be rewritten in vector notations as

Dx= E : 5)



Where D © R™ is the differential matrix, i.e.,

(L0 0 e 0 0]
-1 1 0 0 0
0 -1 1 . 0 0 |
. . L . (6)

and h is the normalized column vector of , given by
Pz ()

Histogram Modification

The conventional HE algorithm has several drawbacks. First, when a histogram bin has a very large
value, the transformation function gets an extreme slope. This can cause contrast overstretching, mood
alteration, or contour artifacts in the output image. Second, particularly for dark images, HE transforms
very low intensities to brighter intensities, which may boost noise components as well, degrading the
resulting image quality. Third, the level of contrast enhancement cannot be controlled since the conventional
HE is a fully automatic algorithm without any parameter. To overcome these drawbacks, many techniques
have been proposed. One of those is HM
In this recent approach to HM, the first step can be expressed by a vector-converting operation
m=f(h) where m = [mO,ml,...,mL-1]' denotes the modified histogram .Then, the desired

transformation function X= [Xo, X4,...... x..1]' can be obtained by solving Dx=m  (8)
which is the same HE procedure as in (5), except that 7 is used instead of where is the normalized column

vector of mi.e.,

m=""m )

1tm

C. LHM

We develop an HM scheme using a logarithm function, which is monotonically increasing and can reduce
large values effectively. In [20], Drago et al. demonstrated that a logarithm function can successfully reduce
the dynamic ranges of high-dynamic-range images while preserving the details. We exploit this property
and apply a logarithm function to our HM scheme, which is called LHM. We use the following logarithm

function to convert the input histogram value to a modified histogram value m,,
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_ log(hyhmgx10”H+1)
log(hfnqx107#+1)

Where mk denotes the maximum element within the input histogram h and p is the parameter that

my (10)

controls the level of HM. As p gets larger, hk.hmax.10™ in (10) becomes a smaller number. Therefore, a
large p makes mk almost linearly proportional to hk. Thus, the histogram is less strongly modified. On
the other hand, as p gets smaller hmax.10™*, becomes dominant and

log(hy. Rypge- 107# + 1) = log(hy) + log(h,,q,. 107H)
=10g (Rpmax- 107H) (11)

Consequently Mk, becomes a constant regardless of h, making the modified histogram uniform. In this way, a

smaller results p in stronger HM. Fig. 1(a) illustrates how the proposed LHM scheme modifies an input histogram
according to parameter | , and Fig. 1(b) plots the corresponding transformation functions, which are obtained by

solving (8). In this test, the “Door” image in Fig. 1(c) is used as the input image.
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Fig. 1. Illustration of LHM: (a) The input and modified histograms of the test
image in (c). in which each histogram is normalized so that the sum of all ele-
ments is 1. (b) The corresponding transformation functions. [(d)—(g)] The output
images. (a) Histograms. (b) Transformation functions. (c¢) Input image. (d) HE.
@p=2.0p=5.(gp =1T.

In the above Fig. 1(d)-(g) compare the output images of the conventional HE algorithm and the
proposed LHM scheme. On the other hand, the proposed algorithm with pu=5 yields less
artifacts on the door knob while enhancing the details on the background region. . Therefore, by
controlling the single parameter p , LHM can obtain the transformation function, which varies
between the identity function and the conventional HE result.

PCCE algorithm

Here, we propose the PCCE algorithm. Fig. 2 shows an overview of the proposed algorithm. We first
gather the histogram information h from an input image and apply the LHM scheme h to obtain the
modified histogram m. Without power constraint, we can solve equation Dx=m in (8) to get the
transformation function. However, we design an objective function, which consists of power-constraint

and contrast-enhancement terms. We then express the objective function in terms of variable y = Dx.
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Based on the convex optimization theory, we find the optimal y that minimizes the objective function.
Finally, we construct the transformation function x from y via x=D'y and use x to transform the input

image to the output image.

Convex Optimization

Formulation of lierative
Objective Function | | Optimization

Input N Histogtam

A X| Pixl N Output
Image | Acquisition

Mapping | Image

S LM —>

Fig. 2. Flow diagram of the proposed PCCE algorithm.

We model the power consumption in an emissive display panel that is required to display an image. A
pixel-level power model for an OLED module. According to their experimental results, power P to
display a single-color pixel can be modeled by
P = wg+w.RY +w,GY +w;, BY (12)
where, R,G and B are the red, green, and blue values of the pixel. Exponent y is due to the gamma
correction of the color values in the SRGB format. A typical is y 2.2., w0 accounts for static power
consumption, which is independent of pixel values, and, wr,wg and wb are weighting coefficients that
express the different characteristics of red, green, and blue sub-pixels. we ignore parameter for static
power consumption.

Then, we model the total dissipated power (TDP) for displaying a color image by

TDP=X (w,.R] + w, G + w,,B]) (13)
where N denotes the number of pixels in the image and (Ri,Gi,Bi) denotes the RGB color vector of the
pixel. The weighting coefficients, wr ,wg and wb, and are inversely proportional to the sub-pixel
efficiencies, For example, in a particular OLED panel in a mobile phone, the weighting ratios are about
wr : wg : wb= 70 : 15 : 154 . However, we note that different display panels have different weighting
coefficients.
For a grayscale image, the TDP is similarly modeled by

TDP=%;5,t¥! (14)
Where Yi is the gray level of the ith pixel. . Therefore, the TDP in (14) can be compactly written in vector

notations
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TDP=Y%{=g hyx; =h* ¥ (x) (15)

as where @ (x) = [x},x],.......,x}_,]" and h is the histogram vector whose kth element is hk.

B. Constrained Optimization Problem

We save the power in an emissive display by incorporating the power model in (15) into the HE
procedure. We have two contradictory goals, i.e., we attempt to enhance the image con-
trast by equalizing the histogram, but we also try to decrease the power consumption by reducing the
histogram values for large intensities. These goals can be stated as a constrained optimization
problem, i.e.,

Minimize ||Dx — m||®+oc hf@¥(x)
Subjectto xp =10

xp1=L-—-1,

Dx>0. (16)
The objective function has two terms||Dx — m||*+oc h*@Y(x), ie., is ||[Dx — m|* the histogram-
equalizing term in (8) and h'@¥(x) is the power term in (15). By minimizing the sum of these two terms,
we attempt to improve the image contrast and reduce the power consumption simultaneously. There are
three constraints in our optimization problem in (16). The two equality constraints X0 = 0 and XL-1 = L-
Istate that the minimum and maximum intensities should be maintained without changes. The inequality
constraint Dx>0 indicates that the transformation function should be monotonic, i.e, xk>xk-1 for every k.

Note that a>0 denotes that all elements in vector a are greater than or equal to 0.

e Solution to the Optimization Problem:

Exponent y in the power term h'@"(x) is due to the gamma correction, and a typical y is 2.2. For
generality, let us assume that y is any number greater than or equal to 1. Then, the power term x= h'@(x)
is a convex function of x, and the problem in (16) becomes a convex optimization problem [21]. Based on
the convex optimization theory, we develop the PCCE algorithm to yield the optimal solution to the
problem. According to the minimum-value constraint in (16) x0, is fixed to 0 and is not treated as a
variable. Thus, the transformation function can be rewritten as X= [Xo, Xy,...... xL.1]' after removing x0
from the original x . Similarly, the dimensions of, 111 , h and @v(x) are reduced to by removing the first
elements,

By substituting variable and expressing the maximum- value constraint in terms of, (16) can be
reformulated as respectively, D and has a reduced size (L-1)X(L-1) by removing the first row and the first

column. Then, we reformulate the optimization problem by the change of variable y=Dx . Each element
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in the new variable is the difference between two output-pixel intensities, i.e. yk = xk-xk-1. Thus, vy is

called the differential vector. Then, x = D'y

, Where
1 0 «v 0 07
1 1 -+ 00
D~'=|: : -~ 1 1| eRETDXEAD, (17)
1 1 -+ 1 0
11 - 1 1]

By substituting variable and expressing the maximum-value constraint in terms of , (16) can be
reformulated as x = Dy
Minimize ||y —m||*+echf@" (D~1y)
Subjectto 1fy =L —1,
y=0. (18)
Iy, vo)=lly — |2 +oc hE@¥ (D~ 1y) + v( 1ty — (L — 1)) — A%y (19)

To solve the optimization problem, we define the Lagrangian cost function, i.e.,
veR and A= [Ag, Ay,...... ALi] eREF1
Are Lagrangian multipliers for the constraints. Then, the optimal can be obtained by solving the Karsh—

Kuhn-Tucker conditions

1ty=1—-1 (20)
y=0 1)
>0 (22)
Ay=0 (23)
2(y-m) + ayD T*H@Y 1D~ 1y)+v1-A=0 (24)
Where

A = diag()) and H= diag(h)
We first expand the vector notations in (24) to obtain a system of equations and subtract the the equation
from the (i+1) one to eliminate v . Then, we have a recursive system, i.e.,

y|+]_ :yi+ﬁi+1-ﬁi+¥hi@;{:1}rk}}r_l
Ai+1-Ai

+ for 1<i<L-2 (25)

-
s
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In the Appendix, we show that all values can be eliminated from the recursion in (25) using (21)—(23) and
that all yi values can be expressed in terms of a single variable Z. More specifically,
Each yi is a monotonically increasing function of Z, given by. Then, the remaining step is to determine
that satisfies the maximum-value constraint in (20). To this end, we form a function, i.e.,

f(z) = 1y-(L-1)=%{ gi(2)-(L-1) (26)
And find a solution to f(Z)=0. Since f(Z) is monotonically increasing, there exists a unique solution to
f(2)=0 . In this paper, we employ the secant method to find the unique solution iteratively. Letz™ denote

the value of at the the iteration. By applying the secant formula, i.e.,

. . =11 _ _(n-2) .
20 = gm0 22T gty 3 27)

Frein-2—gigln-zly
Iteratively until the convergence, we obtain solution. From, we can compute all elements in y since
yi=gi(z). Finally, the transformation function x=Dy is the optimal solution to the original problem in
(16), which enhances the contrast and saves the power consumption simultaneously subject to the
minimum-value, maximum-value, and monotonic constraints. Parameter in the objective function in (18)
determines the relative contributions of the histogram-equalizing term ||Dx — m||? and the power term
h'@(D™y). These two terms, however, have different orders of magnitude in general. Whereas y and m
are not affected by the resolution of an input image, histogram values in h depend on the image
resolution. Moreover, the power term is generally proportional to the average luminance value of the
input image. It is convenient to compensate the unbalance between the two terms by dividing the power
term by the image resolution and the average luminance value. More specifically, we change the variable

by

B=ax T Vinput,i (28)
where isYinput,i the gray level of the pixel in the input image. Then, we control B instead of o . For
example, Fig. 3 shows the results of the proposed PCCE algorithm at various B values. In this test, the
“Door” image in Fig. 1(c) is also used as the input image; the LHM [ parameter is set to 5, and is set to y
2.2. In Fig. 3(a), when B=0 , the power term is not considered in (18), and we obtain the differential
vector y=m . As [ gets larger, the elements yk for low pixel values k decrease, whereas yk values for high

k values increase.
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Fig. 3. PCCE results on the “Door” image at various # values. In the black
curve in (b) and the corresponding output image in (f), generalized minimum-
and maximum-value constraints o = 5 and r355 = 210 are used. In the other
cases. the original constraints +p = U and r255 = 255 are used. Note that
(c) is the result without the power constraint, and thus, it is exactly the same as
Fig. 1(f). (a) Differential vectors y . (b) Transformation functions x. (c) = ..
d3=05.()3=3.(0) 7 =284, 2y = 5,and wp55 = 210.

As shown in Fig. 3(b), these changes in y lower the transformation function, reducing the power
consumption. A bigger p saves more power. Without the power constraint, the TDP is 9.28X10°. At p=5
and 3, the proposed algorithm reduces the TDP to 3.55X10° and 1.11X10° respectively. In this way, the
proposed algorithm determines the transformation function that balances the requirements of power
saving and contrast enhancement optimally. Furthermore, the amount of power saving can be controlled
by the single parameter . Specifically, instead of the minimum and maximum-value constraints in (16),

we can use generalized constraints x0=Imin and xL-1=Imax to derive the transformation function, which
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maps the input dynamic range [0,L-1] to the output dynamic range [Imin,Imax]. For instance, Fig. 3(b)
also shows the transformation function with constraints x0=5 and x255=210. Parameter B is set to 2.84 to
consume the same TDP as the red curve(x0=5, x255=210,=5) in Fig. 3(b). Comparing the output images
in Fig. 3(e) and (f), we see that the new constraints reduce the dynamic range and degrade the overall
contrast. In the remainder of this paper, the original constraints are employed to exploit the full dynamic

range.

e PCCE FOR VIDEO SEQUENCE

We extend the proposed PCCE algorithm to enhance video sequences. The proposed algorithm provides a
power-reduced output image using the power-control parameter . We can apply the proposed algorithm
with fixed to B each frame in a video sequence. However, a typical video sequence is composed of
frames with fluctuating brightness levels. Experiments in Section V-B will show that a bright frame can
be enhanced with large  to save power aggressively, whereas a dark frame can be severely degraded if its
overall brightness is reduced further with the same B .Therefore, we develop a scheme that determines
adaptively according to the brightness level of each frame. For each frame, we first set the target power
consumption TDPout

TDPin = 52} hk.k¥ TDP based on the input power consumption TDP and then control parameter

TDPout to Achieve TDP. Specifically, we set

TDPout=k.TDPin (32)
Where is the power-reduction ratio Y When k=1, the proposed algorithm saves no power during the
contrast enhancement. On the other hand, when K is smaller, the proposed algorithm darkens the output
frame and decreases the power consumption. The power model in indicates that a bright frame consumes
more power than a dark frame. Therefore, more power saving can be achieved for a brighter frame, and
the power-reduction ratio K in (32) can be set to a smaller value. On the other hand, the ratio for a dark
frame should be close to 1 since even a small power reduction may yield poor image quality by reducing
the contrast further and erasing details. Based on these observations, we set the power-reduction ratio K
by
K=(1--5)7

Where Y denotes the average gray level of an input frame and p is a user-controllable parameter. For a
bright input frame with high Y, is set to a small value to achieve aggressive power saving. On the
contrary, for a dark input frame with low

Y k is set to be close to 1 to avoid the brightness reduction. To summarize, given an input frame, we

determine the target power consumption TDPout using (32) and (33). Then, we find parameter 3 to
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achieve TDPout. Since TDPout is inversely proportional to 8, we can easily obtain the desired  using the
bisection method, which iteratively halves a candidate range of the solution into two subdivisions and
selects the subdivision containing the solution. Thus, in the video enhancement B, is automatically
determined, and the only power-control parameter is in p (33). Note that, for the same Y, larger p yields

smaller k and saves more power.

‘ig. 4. Contrast enhancement results on the test images “Moon, * “Pagoda, * “Beach, ** “Sunset, “ “Ivy, “ “Baboon, * “Lena, ** and “F-16": (a) Original input
mages, (b) the conventional HE algorithm, (¢) WAHE [17]. (d) PCCE with adapted ;:, and (e) PCCE with ;+ = 5. The proposed PCCE algorithm is tested without
he power constraint ( 7 = U}.

Contrast Enhancement without Power Constraint

First, we compare the proposed PCCE algorithm without the power constraint (f=0) with the
conventional HE and HM techniques. Fig. 4 shows the processed images obtained by the conventional
12| Page



HE algorithm, the weighted approximated HE (WAHE) algorithm, and the proposed PCCE algorithm
(B=0) the proposed algorithm is tested in two ways. In Fig. 4(d), the user-controllable parameter pu for
LHM in (10) is set to 2, 6.5, 5.5, 6.5, 5, 5.5, 5, and 5 for the eight test images, respectively, to achieve the
best subjective qualities. On the Other hand, in Fig. 4(e), W is fixed to 5. For the WAHE results in Fig.
4(c), parameter g is adapted for each image to achieve the best subjective quality. Fig. 5 shows the
transformation Functions which are used to obtain the images in Fig. 4. lhttp://rOk.us/graphics/Kodak/
2http://sipi.usc.edu/database/ We observe from Fig. 4(b) that the conventional HE algorithm causes
excessive contrast stretching. In the “Moon” image, hidden noises become visible, degrading the image
guality severely. This noise amplification is due to the steep slope of the transformation function near
intensity 0, as shown in Fig. 5. The contrast overstretching suppresses the overall brightness of the
“Beach” image. The transformation function reduces the input-pixel range [0, 150] to the output-pixel
range [0, 50] by extending the contrast around the input-pixel intensity 170, which corresponds to the
background area. Also, contour artifacts are observed in “Sunset.” In general, the conventional including
amplified noises, contour artifacts, detail losses, and mood alteration. Compared with the conventional
HE, both WAHE and the proposed algorithm reduce artifacts by alleviating abrupt changes in the
transformation functions, as shown “in Fig. 4(c) and (d). WAHE exploits spatial variance information to
reduce large histogram values, based on the observation that peaks in histograms usually come from
background regions. Specifically, WAHE skips repeated pixel intensities during the construction of an
input histogram to focus on the contrast enhancement of textured regions. Thus, it can enhance object
details, whereas it may degrade background details. For example, on the “Pagoda” image, WAHE
improves the contrast of the tower but loses the details in the clouds. Similarly, since the wall in the “Ivy”
image has small intensity variations, its contrast is not enhanced by WAHE significantly. The proposed
PCCE algorithm provides comparable or better results than WAHE on all test images, as shown in Fig.
4(d). On the “Moon, “ “Beach, “ “Sunset, “ “Baboon, “ “Lena, “ and “F-16" images, the proposed
algorithm and WAHE produce similar results. However, on the “Pagoda” and “Ivy” images, the proposed
algorithm yields better perceptual quality than WAHE. Notice that the proposed algorithm enhances the
clouds in “Pagoda” and the patterns on the wall in “Ivy” more clearly. In Fig. 4(e), we fix the LHM
parameter to 5. Except for slight differences in the “Pagoda” image, the output images with the fixed are
almost indiscernible from those with the adapted values in Fig. 4(d). Experiments on various other images
also confirm that =5 is a reliable choice. Therefore, in the following experiments, is set to 5 unless

otherwise specified.

Contrast Enhancement with Power Constraint
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Next, we evaluate the performance of the proposed PCCE algorithm with the power constraint
(B>0). Fig. 6 shows the output images obtained by the proposed algorithm at different values. The images
in Fig. 6(a) are exactly the same as those in Fig. 4(e) B. As gets larger, the overall brightness of the output
images decreases, but the image contrast is relatively well preserved. Note that the perceptual quality and
the subjective contrast of the output images at 8 = 0.5 are almost the same as those at f=0. In particular,
when these images are displayed on OLED panels, it is hard to distinguish the case without the power
constraint p=0 from the case with the power constraint 3>0 unless p is set to be very high. Fig. 6(e) shows
the output images when B has a very high value of 15. Even in this case, the originally bright images
“Ivy” and “F-16” retain visual details partly, but the other relatively dark images are severely degraded. In
general B, can be set to a higher number for a brighter image to save power more aggressively. On the
other hand, for a dark input image, B should be less than 2 for the proposed algorithm to yield good image

quality.
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(b) (d)

o

Fig. 6. PCCE results: (a) # = 0,(b) 3 = 0.5,(c) 7 = 1.5,(d) # = 3,and (e) ? = 15.

Conclusion

We have proposed the PCCE algorithm for emissive displays, which can enhance image
contrast and reduce power consumption. We have made a power-consumption model and have
formulated an objective function, which consists of the histogram-equalizing term and the power
term. Specifically, we have stated the power-constrained image enhancement as algorithm to find
the optimal transformation function. Simulation results have demonstrated that the proposed
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algorithm can reduce power consumption significantly while yielding satisfactory image quality.
In this paper, we have employed the simple LHM scheme, which uses the same transformation
function for all pixels in an image, for the purpose of the contrast enhancement. One of the future
research issues is to generalize the power-constrained image enhancement framework to
accommodate more sophisticated contrast-enhancement techniques, such as and, which process

an input image adaptively based on local characteristics.
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