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Abstract:-The Vulnerability of Microprocessors against soft errors increases due to reduce in feature size, increase
in power density, etc. The register file is one of the essential architectural components where soft errors can be very
mischievous because these errors can rapidly spread from register files throughout the whole system. Thus, register
files are recognized as one of the major concerns when it comes to reliability. This project introduces Self-Immunity
Technique; it improves the immunity of the register file against soft errors. Based on the observation, a certain
number of register bits are not always used to represent a value stored in a register. This project deals with the
difficulty to exploit this obvious observation to enhance the register file integrity against soft errors. It shows that
this technique can reduce the register file vulnerability considerably while exhibiting smaller overhead in
consumption of area and power compared to state-of-the-art in protection of register file. For embedded systems
under stringent cost constraints, where area, performance, power and reliability cannot be simply compromised, it
proposes a soft error mitigation technique for register files. To accomplish this project Modelsim for logical
verification and Xilinx-ISE tool for synthesizing and the VHDL language is used.
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1. INTRODUCTION

Over the last decade, and in spite of the increasingly complex architectures, and the fast growth of new
technologies, the technology scaling has raised soft errors to become one of the major sources for processor crashing
in many systems. Soft errors caused by charged particles are dangerous primarily in high-atmospheric, where heavy
alpha particles are available. However, trends in today’s nanometer technologies such as aggressive shrinking have
made low-energy particles, which are more superabundant than high-energy particles, cause appropriate charge to
provoke a soft error. The soft errors will become a cause of an inadmissible error rate problem in earthbound
applications. Researchers have mainly and traditionally focused on reducing soft errors in memory and cache
structures, due to their large sizes. On the other hand, relatively little work had been conducted for register files
although they are very susceptible against soft errors. The corrupted data in any register, if not taken care of it, may
propagate rapidly throughout the other parts of system’s processor, leading to effective system reliability problems.
In fact, soft errors in register files can be the cause of a large number of system failures. The considerable amount of
faults that affect a system’s processor usually come from the register file. Therefore, some processors protect their
registers with Error Correction Code (ECC), but such solutions may be prohibitive in certain applications (like
embedded) due to the significant impact in terms of area and power. Power consumption was conventionally a major
problem in embedded systems due to their considerable effects on the system. To bridge the gap, there is an
aggravated need of techniques to increase integrity of register file against soft errors with a small effect on both area
and power overhead. This project addresses this challenge by introducing Self-Immunity Technique to improve the

ii|Page



register file integrity to soft errors, especially desirable for processors that demand high register file immunity under
stringent constraints. Self-Immunity technique used for improving the integrity of register files against soft errors by
storing the ECC in the unused bits of a register. It solves the problem of the area and power overhead that typically
comes as a negative side effect in register file protection by achieving high area and power saving with a slight
degrading in the register file vulnerability reduction (7%) compared to a full protection scheme.

2. RELATED WORK AND BACKGROUND

The existing schemes of register file protection such as Triple Modular Redundancy (TMR) and ECC can
achieve a high level of fault tolerance but they cannot be suitable solutions in embedded systems due to their power
and area overheads. The protecting the whole register file with SEC-DED comes with about 20% power overhead.

The proposed approach utilizes the Cross-parity check as a method for correcting multiple errors in the
register files. Building on the concept of Architectural Vulnerability Factor (AVF), it proposed the Register
Vulnerability Factor (RVF) to describe the soft errors in registers can be spread to other system parts. In general, a
value is written into a register, then it is read frequently, and later a new value is written again. Thus, any soft error
occurring during “write-write” or “read- write” intervals will have no effect on the system, because it will be
corrected automatically by the next write operation. The “write-read” and “read-read” intervals are called as
vulnerable intervals as shown in Fig. 1. The RVF of a register is defined as the sum of the lengths of all its
vulnerable intervals divided by the sum of the lengths of all its lifetimes.
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Fig. 1. Different Register Access Intervals.

The pure software approach at compile level, re-schedules the instructions in order to decrease the RVF of
a register file but the proposed technique is not always very effective because it may increase the execution cycles
and even the RVF in some benchmarks. To reduce the area and power, to protect a subset of the registers instead of
full protection schemes and modify the register allocation algorithm to assign the most sensitive registers against
soft errors to the protected registers. The achieved RVF reduction is 23%, 41%, 67% and 93% for protecting 2, 4, 8
and 16 out of 32 registers respectively. A compile technique to reduce RVF by protecting a small part of memory
and write the vulnerable register values in this memory by inserting load/store instructions but it increases both
runtime and code size.

Another important approach is In-Register Replication “IRR”, which exploits the fact that a large fraction
of register values are less than or equal to 16 bits wide for 32-bit architectures. Such values can be replicated in the
same register for increasing the integrity against soft errors. The maximizing register file integrity against soft errors
by reducing the register file vulnerability. In either full or partial protection schemes, this reduction increases the
area and power overheads.

3. PROPOSED SELF-IMMUNITY TECHNIQUE

It proposes to exploit the register values that do not require all of the bits of a register to represent a certain
value. Then, the upper unused bits of a register can be exploited to increase the register file integrity by storing the
corresponding SEC Hamming Code without the need for extra bits. This Code is defined by k, the number of bits in
the original word and p, the required number of parity bits (approximately ). Thus, the code word will be
(k +log, k'+ 1yroposed technique, the optimal value of k is the value which guarantees that w (bit-width of register
file), can cover both k, the required number of bits to represent the value, the corresponding ECC bits of that value.
Consequently, following condition should be valid . The optimal value of k is 26 in 32-bit
architectures and 57 in 64-bit architectures.

When <log, king 32-bit architectures, where each register can represent a 32-bit value, it may exploits the
register values, which require less than (k+log,k + 1= w)5 bits by storing the corresponding ECC bits in the upper unused
six bits of that register to improve the register file integrity against soft errors. This technique is called as Self-
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Immunity Technique. These values are called as “26-bit” values. It calls register values which need more than 26
bits to be represented “over-26-bit” register values. The percentage of register values usage for different applications
of the MiBench Benchmark compiled for MIPS architecture is shown in Fig. 2.

26-bit values over-26-bit values

percentage of register values usage

Fig. 2. “26-bit” register values and “over-26-bit” register values in different benchmarks.

Most of the register values are “26-bit” values. The upper six bits of 88% of the stored data in the register
file are actually unused. It can stores the corresponding ECC in these available bits and increase the integrity of
register files.

In addition to the previous key observation, the contribution of “26-bit” register values in the total
vulnerable intervals is much more than the contribution of “over-26-bit” register values, The fraction of vulnerable
intervals of each benchmark is reported is shown in Fig. 3. As is demonstrated, the fraction of vulnerable intervals of
“26-bit” values is 93% on average.
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Fig. 3. The fraction of vulnerable intervals of “26-bit” register values and “over-26-bit” register values in different benchmarks.

A. Problem Description

1) Goal: The goal of this technique is to reduce the vulnerability of register file with minimum impact on both area
and power overhead. Let N be the total number of registers and V the vulnerability of a register, then the

vulnerability of the register file is
. Let M is the number of protected register values and A the number of accesses, then the total power

overhead can be estimated as . Thus, this goal can be formulated as:

MEE, Vi)e , Minimize

2) Effectiveness of our technique: In a full protection scheme, an ECC generation is performed with each write
operation and ECC checking is perfoi(T¥, 4i) with each read operation. This technique decides to protect the value
depending if it is valid for Self-Immunity, then it activates the ECC generator to compute the ECC bits. Otherwise,
the ECC g(V = TX,Vi)i is skipped. Sit(P = I¥,4ih every register read operation, instead of always checking ECC, this
technique checks whether the ECC is being embedded in the register value, and only if it is, ECC checking is
performed. An average 12% of the data will be stored in the register file without protection as shown in fig 2. From
Fig3, when studying 32-bit architectures, around 93% of vulnerable intervals will potentially be invulnerable. Thus,
this technique promises to reduce the register file vulnerability.
B. Architecture for Our Proposed Technique

It needs to distinguish “26-bit” register values from “over-26-bit” register values. To do that, a self-x bit is
associated with each register and it initially clears all self-x bits to indicate the absence of any Self-Immunity. For
the sake of simplicity, it explains the proposed architecture with the required algorithms in two steps.
Writing into a register- Fig. 4 illustrates that whenever an instruction writes a value into a register it checks the
upper six bits of that value is '0' or not.

data [31..0] {1 The value is represented in the first
26 bits. Consequently, 1t 15 valid for
Self-Immunity technique and the
Checking the upper six Encoder should generate the

buts 1f they are zeros? { corresponding ECC of that value.

0: The value requires more than 26 bits.
% Consequently. it is not possible to store
N the value with 1ts ECC together i that

register and ECC generation is skipped.

-~

Encoder [+

If (data [31...26] = “0000007)

1 E) then

self-m="1"

register[25..0] = data[25...0]




Fig4. Microarchitectural support for writing a register value.

If they are (26-bit register value case), the corresponding self-n bit is set to '1' indicating the existence of Self-
Immunity. The ECC value is generated and stored in the upper unused bits of the register. Hence, the data value and
its ECC are stored together in that register. In the second case (over-26-bit register value), the corresponding self-n
bit is set to '0' and the value is written into the register without encoding.

Reading from a register- in read operations, the self-x bit is used to distinguish between a Self-Immunity case and
a non self-Immunity case. In the first case, the value and the corresponding ECC are stored together in that register
and the read value should be decoded. In another case, the stored value is not encoded and as a result there is no
need to be decoded as is shown in Fig5.
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Fig5. Microarchitectural support for reading a register value.
C. Potential Power Saving

This proposed architecture promises to consume less power. In this architecture, “over-26-bit” register
values are neither encoded nor decoded and consequently the encoding and decoding operations are not performed
with each read and write operation as it happens in a full protection scheme. This may reduce the power
consumption of this proposed architecture because the encoding and decoding operations are performed only in the
case of “26-bit” register values. Figh shows that on average 12% and 13% of the total number of read and write
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operations are occurred in the case of “over-26-bit” register values. As a result, proposed architecture may consume
less power because the encoder and decoder are lesser times accessed.

Fig6. The percentage of read and write operations in the case of “over-26-bit” register values.

This proposed architecture used a less complex encoder and decoder. This may also lead to a further saving
in the terms of the power consumption. Finally, this proposed architecture reduced the total number of bits of a
protected register from 38 bits to 33 bits and as a result the consumed switching power is lower. The power saving is
mainly due to the fewer ECC operations, the usage of a less complex ECC generator and checker, and the absence of
additional storage for ECC.

4. IMPLEMENTATION DETAILS

The probability of multiple bit-errors is largely lower than the single bit-error, a single bit-error model has
been considered in this project. In this fault injection environment, faults are injected on the fly while the processor
executes an application. In each fault injection simulation, one of the 32 bit registers is selected randomly and a bit
in that register is chosen randomly and then flipped. The write operation clears out the previous injected error into
that register. By using a uniform distribution, a random cycle is chosen as the time that soft error occurs. This makes
sure that the faults will be injected only when the program is executed. Since an injected fault might produce an
infinite loop. Towards evaluating this proposed technique, it uses different applications from MiBench Benchmark
compiled for MIPS architecture to take into account different possible scenarios for register utilization. Simulations
were conducted using the MIPS model simulator. When a simulation terminates, the corresponding output
information are stored and used to classify the simulation. For the classification, it exploits the following categories
proposed in An Accurate Analysis of the Effects of Soft Errors in the Instruction and Data Caches of a Pipelined
Microprocessor, Efficient protection of the pipeline core for safety-critical processor-based systems:

e Wrong Answer: The application terminates normally but the results are not correct.

e Latent: The application terminates normally, but the results are correct but at the end of simulation the
content of the register file is different from that of fault-free case.

o Effect-Less: The application terminates normally, the results are correct, and the content of the register file
is similar to that of fault-free case.

e Exception: The processor detected the injected fault and generated an exception (e.g., invalid address
exception).

e Timed-Out: The application failed to terminate and produce results with a predefined time limit.

e Stalling: The processor computed the expected results in a time greater than the time of fault-free case.

e Crashing: The processor fails to terminate normally. Each benchmark was simulated 10,000 times. As a
result, 10,000 soft errors were injected randomly in the register file. This number compiles with those used
by other research to keep the total time of simulations reasonable. For a fair comparison, it considers three
models of the processor:

Base: a normal processor (without implementing any protection technique).

IRR: a fault tolerant model, where an In-Register Replication technique is implemented. This technique has been
chosen here because it tries to achieve a similar goal as this proposed technique.

SI: a fault tolerant version, where our proposed technique, Self-Immunity, is implemented.

5. EXPERIMENTAL RESULTS AND EVALUATION

As is shown in Tablel, this proposed technique improves the register file immunity effectively by reducing
number of errors. The number of errors reaches zero in some benchmarks. On average, this proposed technique
reduces the number of error by 100%, 87%, 93%, 93%, and 100% for the following categories: Exception, Timed-

Out, Crashing, Wrong Answer, and Stalling respectively as is shown in Fig. 7.
Table.1. Processor behavior for single error injection after implementing this proposed technique.

cjpeg | djpeg | bifcommi | gsort | rawdamdio T&g’
Effect- | Base | 5034 | 5801 | 3118 | 6415 | 5607 2635
Less 51 | o011 | 8961 | 8so1 | 8751 | 7840 7768
Lament | BEe | I3 [1341 [ @6 | 1164 506 1016
Ate 5T | 085 | 0as 933 | 1280 2006 2062
Wrong Base 4 42 372 182 204 1434
Answer [ 51 2 13 [ 0 0 2
Timed- | Base | 180 | 736 | %01 73 1038 713
Dut T ) 377 (] i 1T
i Bese | 117 | 10 5 5 T8 1017
Staling o 1 [ [ 0 0 0
| Base | 1646 | 14961 | 1567 | 1063 1354 335
Exception |—=cr—— 0 ] 0 0 0
[ Bese | 035 [ &1 T | 1105 B3l 1030
Crshing T 5 17 160 [] 0 157
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Fig.7. Percentage of error rate reduction after implementing this proposed technique.
In this case, on average, the system fault coverage after implementing this technique reaches on average
98% and up to 100% as is shown in Fig8.
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Fig.8. System fault coverage comparison for different benchmarks.

Fig. 9 shows that the potential RVF reduction is always very high. It reaches 93% on average and up to 100%. It
achieves the best result compared to the IRR technique. Partial ECC protection technique instead of protecting the
whole register file “Fully ECC” to achieve area and power saving while increasing the register file vulnerability
reduction.
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Fig.9. Comparison of Register Vulnerability Factor Reduction.

An investigate the advantages of using this proposed technique in terms of area overhead against “Fully
ECC” and against the partially protection, it implemented and synthesized for a Xilinx XC2V600 different versions
of a 32-bit, 32-entry, dual read ports, single write port register file. Fig. 10 shows the comparison results in terms of
RVF reduction and area overhead. This technique achieves a good area saving with slight degradation (7%) in the
register file vulnerability reduction compared to “Fully ECC”. Furthermore, protecting 16 out of 32 registers
“16ECCs” can achieve similar RVF reduction to our result but this technique occupies 31% less area. On the other
hand, protecting 4 registers “4ECCs” comes with an area overhead similar as this technique but this technique
achieves 1.3X improvement in terms of RVF reduction.

Since the main target of this project are 32-bit embedded processors, a synthesizable VHDL model of the
DLX processor is used to investigate the performance and power penalties for each technique. Also the Xpower tool
from Xilinx is used to estimate the total power consumption in each of the different processor versions for the
adcpm decoder benchmark application. Since the used encoder and decoder are less complex as explained earlier,
the critical path in this proposed architecture is shorter. This technique improves the performance compared to other
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competitors. As shown Fig. 11, this technique comes with a minimum impact on both performance and power. It
achieves 54% delay reduction and consumes with 94% less power compared to “Fully ECC”. Furthermore,
protecting 16 out of 32 registers “16 ECCs” achieves similar RVF reduction as mentioned before, but this technique
achieves a 47% performance improvement and consumes 87% less power. On the other hand, this technique
consumes 75% less power and achieves 29% improvement in terms of delay overhead compared to “4ECCs”4.
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Fig. 11. The performance and power overhead comparison.

6. CONCLUSION

For embedded systems under stringent cost constraints, where area, performance, power and reliability
cannot be simply compromised, it proposed a soft error mitigation technique for register files. This experiment on
different embedded system applications demonstrate that this proposed Self-Immunity technique reduces the register
file vulnerability effectively and achieves high system fault coverage. This technique is generic as it can be
implemented into diverse architectures with minimum impact on the cost.
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