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Abstract—In  Linux  system,  different  machine  learning  tech- niques  used  to  learn  the  CPU  time-Slice  utilization  
behaviour  of  known  program   by  analysis  of  certain  static and  dynamic attributes of processes when learning is 
done. When they are in running mode  our  objectives  was  to  minimize  a  process  TaT (turn-around-time)  with  
using  the  most  important  static  and dynamic attributes of the process that can help best to predict the CPU burst 
time. To allow scheduling with customized time slices we modify the Linux  kernel  scheduler.  The WEKA  tool used to 

find the most suitable  machine  learning  technique  or method  to characterize our  program.  With  using  different 
experiment,  we find that  the C4.5 decision tree algorithm most effectively solved this  problem.  we find  that the  turn  
around  time(TaT)reduce in predictive  scheduling  in  the  range  of 1.4percent  to  5.8percent. this  is because  reduction 
in the  context  switches  which  is  used to  complete  the  process  execution  .our  result  interesting   were operating 
system presently never make use of program’s  previous execution  history  in there scheduling. 

 
Index   Terms—Context   Switches,   Decision  Tree   Algorithm, Machine  Learning,  TaT, WEKA. 

 

I.  INTRODUCTION 

According to scheduling algorithm, process schedulers al- locate CPU time slices to every process that does not use any 
previous execution history of the process. For better utilization of resources we could recognize a program and predict it’s 
resource requirements. For example, many processes having fixed CPU time is pre empted while having a very small CPU 
time  needed for  completion. This  increases no.  of  context switches  also  called  as  process  switch  or  task  switch  [4]. It 
causes invalidation of pipelines, caches and swapping of buffers and so on. This increases delay between process submission 
and process completion called as TAT of the pro- gram. So, by recognizing or characterizing program we may understand their 
previous execution history and predict their resource requirements. In this work, we address problem of using machine learning 

technique, how to minimize the TAT of program. Using different features of program of characteristics machine learning 
technique used to predict CPU burst time. To minimize the TAT we use special time slice of STS as the CPU burst time. In 
section II, we discuss Related work, Proposed System in section III, in section IV, Results and Discussion. In section V, present 
the conclusion and describe possible future work. 

 

A. Dissertation  Idea 

In Linux, the CPU scheduler in the Linux kernel has been rewritten multiple times since its conception. This is because 
Linux  has  evolved  during  all  these  years  and  has  gainedsupport many different kinds of systems and applications. The 
original goals of Linux were to provide a Unix-like operating system to run on small personal computers. At that time, the 
applications  were very simple and their requirements were not the same as the ones we have nowadays. One of these is 
quick response for interactive applications, something that has become very important due to Linux being used on desktop 
machines. Since the kernel has evolved in a lot of areas and now runs on many kinds of different machines from high-end 
computer clusters to embedded devices, including, as already mentioned, desktop machines. These changes have forced the 
rewriting of the CPU scheduler multiple times during its existence to adapt to the new requirements. 

 

B. Motivation of Dissertation 

In  Linux,  the  CPU  scheduler  in  the  Linux  kernel  has been  rewritten  multiple times since its  conception. This is 
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because Linux has evolved during all this years and has gained support many different kinds of systems and applications. The 
original goals of Linux were to provide a Unix-like operating systems to run on small personal computers. At that time, 
the applications were very simple and their requirement were not the same as the ones we have nowadays.one of these is quick 
response for interactive applications, something that has become very important due to Linux being used on desktop machines. 
Since the kernel has evolved in a lot of areas and now runs on many kinds of different machines from high- end computer 
clusters to embedded devices,including desktop machines.  these  changes  have  forced  the  rewriting  of  the CPU scheduler 
multiple times during its existence to adapt new requirements.The latest refactoring went in Linux 2.6.8.1, which introduced 
a new CPU scheduler with O(1) algorithms. This renewed scheduler can make decisions in a constant finite time, independently 
of the number of processes running on the machine. In other words, its response is generally deterministic and imposes a small 

penalty over system performance. So, generally process schedulers allocate CPU time slices to a process  according to  a  
scheduling algorithm that  does  not use any previous execution history of the process. Here we suggest that better resource 
utilization could be done if we 
”recognize” a program and predict its resource requirements. For example, consider a process which exhausted its allocated 
CPU time and is pre-empted although it needed a small slice of additional CPU time for completion. Such preemption, 
increases number of context switches (also called as a process switch or task switch). It causes invalidation of caches and 
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pipelines, swapping  of  buffers  and  so  on.  Thus  ultimately this increases TaT of the program. (TaT is the delay between 
process submission and process completion). Thus we observe that by characterizing or recognizing programs it may be 
possible to understand their previous execution history and predict their resource requirements. 
So, detail objectives of proposed system are as follows, 

•  The Prime objective is to improve the process scheduling algorithm by seeing past behaviour of processes. 

• We will identify the process with their attribute and instances and will find it’s ideal values that will be checked by C4.5 
Decision Algorithm to minimize their turn-around time. 

•  We will prove that fusion of process management of the OS and machine learning technique will provide a great 
optimization in the performance of computer system. 

 

II. RELATED WORK 

To remember the previous execution behaviour of certain well known programs, suranauwarat and Taniguchi, presents the  
approach where they  study the  process times  of  these programs  in various similarity states.[8] The program flow 
sequence(PFS) used to extend the CPU time slice of a process from the past history of process PFS is calculated. To decide 

whether  the  program  executing  currently  needs  additional time,  PFS  is  used.  They  set  a  maximum  dispatch  delay time 
called Tm which determines the time limit for context switching having multiple of the delay for minimum process switching 
time. So, either reducing or increasing some scaling features they control the CPU time of a process Tp. Thus, they conclude  
from  experimental  results  that  overall  processing time is reduced for known programs. PFS knowledge base used  to  
schedule the  process they  search and  improve it’s behaviour. 

a)  : In the paper by smith [5], they use genetic algorithm to identifying ”good template” for a particular workload. 
Template  defines similarity  between  two  applications.  The author predicted the application run times using historical 
information. They present a technique for deriving predictions for the run times of parallel application from the run time of 

similar application that have executed in the past. To define similarity they use different characteristics of program. Ge- netic 
algorithm techniques used to determine those application characteristics that yield the best definition of similarity for making 
predictions. In a machine learning perspective, Genetic algorithm’s are expensive in terms of computation[13] and also their  
results are fragile. Genetic algorithms (GAS) provide a learning method motivated by an analogy to biological evolution. 
Rather than search from general-to-specific hy- potheses, or from simple-to-complex, GAS generate successor hypotheses by 
repeatedly mutating and recombining parts of the best currently known hypotheses. At each step a collection of hypotheses 
called the current population is updated by replacing  some  fraction  of  the  population  by  offspring  of the fit current 
hypotheses. The process forms a generate-and- test beam-search of hypotheses, in which variants of the best 
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current  hypotheses  are  most  likely  to  be  considered  next. The popularity of GAS is motivated by a number of factors 
including: Evolution is known to be a successful, robust method for adaptation within biological systems.GAS can search 
spaces of hypotheses containing complex interacting parts, where the impact of each part on overall hypothesis fitness may be 
difficult to model. Genetic algorithms are easily parallelized and can take advantage of the decreasing costs of powerful 
computer hardware. The problem addressed by GAS is to search a space of candidate hypotheses to identify the best 

hypothesis. In GAS the ”best hypothesis” is defined as  the  one  that  optimizes  a  predefined numerical measure for the 
problem at hand, called the hypothesis Jitness. For example, if the learning task is the problem of approximating an unknown 
function given training examples of its input and output, then fitness could be defined as the accuracy of the hypothesis over 
this training data. If the task is to learn a strategy  for  playing chess,  fitness could  be  defined as  the number of games won 
by the individual when playing against other individuals in the current population. Although different implementations of 
genetic algorithms vary in their details, they  typically share the following structure: The algorithm operates by iteratively 
updating a pool of hypotheses, called the population. On each iteration, all members of the popu- lation are evaluated 
according to the fitness function. a new population is then generated by probabilistically selecting the most  fit individuals  

from  the  current  population. Some  of these selected individuals are carried forward into the next generation  population  
intact.  Others  are  used  as  the  basis for  creating new  offspring  individuals  by  applying genetic operations such as 
crossover and mutation. In the paper of Gibbsons [3] , it uses the statistical Regression Methods used for the prediction. While 
this method work on numeric data but can’t used in nominal data. The application signature model used for predicting 
application performance on a given set of a grid resources in the paper by Fredrik[2]. In this model, they introduced the 
notion of application intrinsic behavior to separate the performance effects of the runtime system from the behavior inherent 
in the application itself. The signature model is used as the basis for performance predictions. So their approach combines 
the knowledge of application intrinsic behavior  with run-time predictions of resources. They also define application intrinsic 

metrics as metrics that are solely dependent on the application code and problem parameters. Signature  Model Achieved 
application performance reflects a  complex interplay of application demands on system re- sources and the response of 
the resources to those demands. In this section, we outline a new approach to decomposing this interdependence, enabling 
us to separate of application demands on resources from specification of resource response. We then combine information about 
application demands and resource capabilities to generate a performance prediction for the application running on a specific 
system. A metric space is a multidimensional space where each axis represents a single metric (e.g. FLOPS or I/O request 
size). Consider an applica- tion where we measure N different metrics. These metrics span 

 
out an N-dimensional metric space. Each metric is measured at regular intervals, and the measured values specify a trajectory 
through the N-dimensional metric space. As the application executes, it traces a trajectory in the metric space. Contract 
verification consists  of  comparing  the  predicted  signatures with the signatures based on runtime measurements. Applica- 
tion Intrinsic Metrics We define application intrinsic metrics as metrics that are solely dependent on the application code 
and problem parameters. These metrics are independent of the capabilities of the system on which the application is running, 

such as processor speed or network bandwidth. These metrics express the demands the application places on the resources, or 
the resource stimuli. Examples of application intrinsic met- rics include number of bytes transferred per communication 
message and average number of source code statements per floating point operation. As the application executes, it traces a  
trajectory  through  the  application  intrinsic  metric  space. We call this trajectory the application intrinsic signature. By 
selecting application intrinsic metrics that capture important resource demands, we can understand the load the application 
places on the execution environment. The ability of the re- sources to service the load determines the overall performance of the 
application. Timing issues or data dependencies may cause the application intrinsic signatures to vary between runs. The Tigran 
[14] author presents the Linux kernel 2.4 internal architecture  that  used  for  the  implementation of  scheduler using Linux 

kernel. In the paper Garner [7] it used the WEKA tools for identifying the best machine learning technique used for the 
characterization program. The design of Unix operating system can be represented by the Maurice Bach [1] for the purpose of 
the system development. 
From this brief review, we have following conditions, 

•  It is possible to predict scheduling behaviour. 

•  The approach depends on machine learning techniques used to train on previous program execution behaviour. 
•  For significant prediction, it is important to characterise the program attributes. 

 

III.  PROPOSED SYSTEM 

The proposed structure mainly focuses on following areas 

•  Module 1:- User Level and System Level processes. 

•  Module 2 :- User Space Project Development. 

•  Module 3:- Kernel Space Project Development. 
 

A. 

Module 1:- User Level and System Level Processes The Module  1  consist of A  process is a  program (object code 
stored on some media) in the midst of execution. Processes are,  however,  more  than  just  the  executing  program  code 
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(often called the text section in Unix).They also include a set  of  resources  such  as  open  files  and  pending  signals, 
internal kernel data, processor state, a memory address space with one or more memory mappings, one or more threads of 
execution, and a data section containing global variables. Processes, in effect, are the living result of running program code. 
The kernel needs to manage all these details efficiently 

 

 
 

Fig. 1.    System Overview 

 
 
 
and transparently. Threads of execution, often shortened to threads, are the objects of activity within the process. Each thread 
includes a unique program counter, process stack, and set of processor registers. The kernel schedules individual threads, not 

processes. In traditional Unix systems, each pro- cess consists of one thread. 

b) :  In   modern   systems,   however,   multithreaded programs-those that consist of more than one thread- Linux has a 
unique implementation of threads: It does not differentiate between threads and processes. To Linux, a thread is just a special 

kind of process. A program itself is not a process; a process is an active program and related resources. Indeed, two or more 
processes can exist that are executing the same program. In fact, two or more processes can exist that share various resources, 
such as open files or an address space. A process begins its life when, not surprisingly, it is created. In  Linux, this  
occurs by  means of  the  fork()  system call, which creates a new process by duplicating an existing one. The process that 
calls fork() is the parent, whereas the new process is the child. The parent resumes execution and the child starts execution 
at the same place: where the call to fork() returns.The fork() system call returns from the kernel twice: once in the parent 
process and again in the newborn child. Often, immediately after a fork it is desirable to execute a new, different program. The 
exec() family of function calls creates a new address space and loads a new program into it. In contemporary Linux kernels, 

fork() is actually implemented via the clone() system call. Finally, a program exits via the exit()  system call.This function 
terminates the  process and frees all its resources. A parent process can inquire about the status of a terminated child via the 
wait4()1 system call, which enables a process to wait for the termination of a specific process.  When  a  process  exits,  it  is  
placed  into  a  special zombie  state  that  represents terminated processes until  the  parent calls wait() or waitpid(). 

 

 

B. Module 2:- User Space Project Development 

In Module 2, Learning is done by an analysis of certain static  and  dynamic  attributes  of  the  processes  while  they 
are being run. we discover the most important static and dynamic attributes of the processes that can help best in prediction of 
CPU burst times which minimize the process TaT (Turn-around-Time). In high performance environments, a request to 
execute a program is not serviced immediately but instead serviced only when resources are available. Many grid 

applications have varying resource requirements and the problem with these applications is that current scheduling systems (as 
in PBS scheduling for grids)[2] rely on user’s estimates of the resource requirements. Scheduling in such systems could benefit 
by scheduling of resources using the knowledge  of  previous  process  execution  behaviour.  Thus there is a need to 
characterize the process execution behaviour and resource utilization (like total CPU time). Such knowledge could help to 
improve the scheduling policy, guide the resource selection and balance the workload distribution. Mainly we use two broad 
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categories within which we compare programs and find similarities. These are the interactive and non-interactive classes of 
programs. Since we would like to study the program characterization in general, we include the interactive class of programs 
also although the practical utility of such programs in batch systems may not be meaningful. In each category, we  run  the  
programs with  different  input  Sizes.  By  using these run traces, we collect data such as system time, user time etc. and 
prepare a knowledge base. Applying machine- learning techniques on this knowledge base, we extract the most effective 

parameters that can characterize the process execution behaviour. These isolated parameters were used to predict  the  resource 
requirements of  similar process. They study the process times of these programs in various states. The knowledge of the 
program flow sequence (PFS) is used to extend the CPU time slice of a process. PFS of a process is computed from its past 
execution history. PFS characterizes the process execution behavior and is used to decide whether the program executing 
currently needs additional time. They set a threshold Tm called as maximum dispatch delay time, which determines the time 
limit for context switching; and is  a  multiple of  the delay for minimum process switching time. They control the CPU 
time of a process Tp, by either reducing or increasing a scaling feature. The information for computing the PFS and Tp 
adjustment thresholds are based on observations from the 4 phases: 

•  when a process is created. 

•  when a process uses up its time-slice. 

•  when a process blocks itself, and 

•  when a process terminates. 

we conclude from experimental results that overall processing time is reduced for known programs. To schedule a process they 

search for its name in the PFS knowledge base and thus improve its behavior. Then, The program ’X’ is given to C4.5 decision 
tree as an input. The decision tree will classify ’X’ 

and output the Special Time Slice (STS). Then we send this 

STS information to modified scheduler through a system call. 

 

C. Module 3 :- Kernel Space Project Development 

In Module 3, we have kernel space project development; in this from user level space we take that special time slice 

to the modified scheduler. Run the programs with different special  time  slices  with  modified O(1)  scheduler  and  find STS 
(best special time slice) which gives minimum turn- around-time(TaT). We send this STS information to modified scheduler 
through a system call[10]. The scheduler instructs the CPU such that CPU allocates STS ticks to ’X’. The CPU allocates STS 
ticks to ’X’ and it will run with minimum TaT. The Linux scheduler is defined inkernel sched.c. The scheduler algorithm and 
supporting code went through a large rewrite early in the 2.5 kernel development series. Consequently, the scheduler code is 

entirely new and unlike the scheduler in previous kernels. The new scheduler was designed to accom- plish specific goals, 
implement fully O(1) scheduling. Every algorithm in the new scheduler completes in constant-time, regardless of the number 
of running processes or any other input. The basic data structure in the scheduler is the runqueue. The runqueue is defined 
inkernel/sched.c as struct runqueue. The  runqueue is the list of runnable processes on a given processor; there is one 
runqueue per processor. Each runnable process is on exactly one runqueue. The runqueue additionally contains per-processor 
scheduling information. Consequently, the runqueue is the primary scheduling data structure for each processor. Why 
kernel/sched.cand not include/linux/sched.h Because  it  is  desired  to  abstract  away  the  scheduler code and provide only 
certain interfaces to the rest of the kernel. subsectionMathematical  Model  When  solving  problems we have to decide the 

difficulty level of our problem. There are three types of classes provided for that. These are as follows: 

•  P Class. 

•  NP-hard Class. 

•  NP-Complete Class. 

c) P:   Informally the  class  P  is  the  class  of  decision problems  solvable  by  some  algorithm within  a  number  of 
steps  bounded by  some  fixed polynomial in  the  length  of the input. Turing was not concerned with the efficiency of 
his machines, but rather his concern was whether they can simulate arbitrary algorithms given sufficient time. However it 
turns out Turing machines can generally simulate more efficient computer models (for example machines equipped with many 
tapes or an unbounded random access memory) by at most squaring or cubing the computation time. Thus P is a robust 

class and has equivalent definitions over a large class of computer models. Here we follow standard practice and define the 
class P in terms of Turing machines. 

d) NP  Hard:   A  problem is  NP-hard if  solving it  in 

polynomial time would make it possible to solve all problems in class NP in polynomial time. Some NP-hard problems are also 
in NP (these are called ”NP-complete”), some are not. If you could reduce an NP problem to an NP-hard problem and 
then solve it in polynomial time, you could solve all NP 
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problems. Also, there are decision problems in NP-hard but are not NP-complete, such as the infamous halting problem. 

e) NP Complete:  A decision problem L is NP-complete if it is in the set of NP problems so that any given solution to 
the decision problem can be verified in polynomial time, and also in the set of NP-hard problems so that any NP problem 
can be converted into L by a transformation of the inputs in polynomial time. 

f)  The  complexity  class  NP-complete  is  the  set  of problems that are the hardest problems in NP, in the sense that 
they are the ones most likely not to be in P. If you can find a way to solve an NP-complete problem quickly, then you can 
use that algorithm to solve all NP problems quickly. 

 

 
 

Fig. 2.    Venn diagram 

 

 
 

D. Dynamic Programming and Serialization 
 

In  proposed approach various  dynamic programming as- pects are used. Details are as follows: 
In user and system level processes, divide and conquer methodology is used for segmentation purpose by considering the same 
sequence of activity get divided into no of processes, so we divide the processes to characterize the attributes from it. After 
this it will stored it into the knowledge base data structure. Once all the processes are stored into the knowledge base, when the 

new process will come then it will first classify with using this structure and then predict the special time slice of it and run this 
process. If not present the instances of this process in this data structure then it will stored the instances into it. 

g) :  In the user and kernel space project development, the  branch  and  bound  method  is  used  for  initializing and 
restructuring the classifier decision trees. 

 

E. Data independence and Data Flow architecture 
 

Data flow diagram (DFD) is also called as ’Bubble Chart’ is a graphical technique, which is used to represent information 
flow, and transformers those are applied when data moves from  input to output. DFD represents system requirements 
clearly and identify transformers those becomes programs in design. DFD may further partitioned into different levels to show 
detailed information flow e.g. level0, level1 etc. 
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Fig. 3.    dfd(level 0) 

 

 
 

Fig. 4.    dfd(level 1) 
 

 

F.  Turing  Machine 

The large class of applications having following character- istics requires Turing machine:- 

•  The applications those are driven by the events rather than data. 
•  The applications those produce control information rather than reports or displays. 

 

IV. RESULTS AND DISCUSSION 

The implementation of system consists of implementation of c4.5 decision tree Algorithm. Given the training instances 
below, use C4.5 and C4.5rules to generate rules as to when to play, and when not to play, a game of golf. 
 

A. Implementation  of C4.5 Decision Tree Algorithm 

Input - Training Data 

Output - Strong Rules 

 
1) Training  Data:   The column headers - the attribute names - become part of ”golf. names”, the filestem.names file. 

The subsequent rows - the training instances - are entered into 
”golf.data”, the filestem.data file. following evaluation on the training data. 
The different verbosity levels: 

•  golf.names :- Class, attribute, and value names. 

•  golf.data :- Training data. The resulting decision tree, 
•  golf.dt, at the default verbosity level. 

•  golf.dt1, at verbosity level 1. 

•  golf.dt2, at verbosity level 2 
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Fig. 5.    dfd(level 2) 

 

 
 

Fig. 6.    State Transition Diagram 

 

TABLE I 

TR A I N I N G DATA  O F GO L F 
 

 
Outlook 

 
Temperature 

 
Humidity 

 
windy 

 
Play / Dont 
Play 

 
Sunny 

 
85 

 
85 

 
False 

 
Dont play 

 
Sunny 

 
80 

 
90 

 
True 

 
Dont play 

 
Overcast 

 
83 

 
78 

 
False 

 
play 

 
Rain 

 
70 

 
96 

 
False 

 
play 

 
Rain 

 
68 

 
80 

 
False 

 
play 
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Rain 

 
65 

 
70 

 
True 

 
Dont play 

 
Overcast 

 
64 

 
65 

 
True 

 
play 

 

 
     
                                     •  golf.dt3, at verbosity level 3. The resulting 

decision rules, 
•  golf.r, at the default verbosity level. 

•  golf.r1, at verbosity level 1. 

•  golf.r2, at verbosity level 2. 

•  golf.r3, at verbosity level 3. 

As you can see, higher verbosity levels provide much more quantitative data than those at the lower levels. Since we are 
primarily concerned with qualitative results, however, only the generated output at the default verbosity level. 

 

B. Testing 
 

Testing is an integral part of any system or project. The various objectives of Testing: 

•  To uncover the errors in function logic or implementation for the software. 
•  To verify that software needs the specific requirement. 

•  To verify that software has been implemented according to the predefined standard. 

Here, I have performed module level testing, checking for each input to be tested. In computer programming, unit testing is a 
procedure used to validate that individual units of the source code are working properly. A Unit is the smallest testable 

part of an application. In procedural programming, a unit may be an individual program, function, procedure etc. While in 
Object Oriented Programming, the smallest unit is a method, which may belong to a base or super class, abstract class or 
derived/child class. Ideally, each test case is independent from others; mock or fake objects as well as test harness can be 
used to assist testing a module in isolation. Unit testing is typically done by developers and not by software testers or end 
users. The goal of unit testing is to isolate each part of the program and show that the individual parts are correct. A 
unit test provides a script, return contract that the piece of  code  must  satisfy.  As  a  result,  affords  several  benefits. In 
continuous unit testing environment, through the inherent practice  of  sustained  maintenance, unit  tests  will  continue to 
accurately reflect the intended use of the executable and code in the phase of any change. Depending upon established 

development practices and unit test coverage, up-to-the-second accuracy can be maintained. Unit testing helps to eliminate 
uncertainty in the units themselves and can be used in a bottom up testing style approach. By testing the parts of a program 
first and then testing the sum of its paths, integration testing becomes much easier. 

 

C. Test Cases 
 

The different test cases generated by C4.5 at the default verbosity level are interpreted as follows: 

i) Firstly, the header. It indicates: 

•  The name of the file stem being used.(e.g., ”golf”) 

•  The total number of training instances, or cases, read in the filestem.data file by C4.5. 
•  The number of attributes per instance. 

j) Secondly, one or more ASCII renditions of a generated decision tree: 

•  The tree consists of a spine of attribute-values that stem from a root attribute test. 

In this example, the root is the attribute test ”outlook”. It has three attribute-values: ”sunny”, ”overcast”, and ”rain”. 
Two subtrees occur: a ”humidity” subtree below ”sunny”, and a ”windy” subtree below ”rain”. 

 
 

 
 

 
 

 
•  The number in brackets following each leaf equals the number of training instances, out of the total number of cases 
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presented in the header, which belong to that path in the tree. 
•  This number may be followed by a second number (e.g., 

4.0/2.0), in which case the second value (2.0) equals the number  of classification errors encountered out of the total 
number of classifications made from the training data in that particular path of the decision tree (4.0). 

The sum of the first series of numbers equals the total number of cases read by C4.5 from the golf.data file. 
(e.g., 4.0 + 2.0 + 3.0 + 2.0 + 3.0 = 14.0) 

The sum of the second series of numbers equals the total number of errors. 
(e.g., 0 for this example). 

Two binary files are created during execution: filestem.unpruned:   the   unpruned   decision   tree   
generated and  used  by  C4.5.  filestem.tree: the  pruned  decision  tree generated and used by C4.5 which is subsequently 
required by C4.5rules to generate rules. 
Thirdly, the unpruned decision tree and the pruned decision tree are evaluated against the training data instances to test 
the fitness of each. 
The first table illustrates the fitness of the unpruned tree. It has two columns: 

•  Size: the size of the unpruned tree. That is, the number of nodes of which it is composed. 
• Errors: the number of classification errors and their corresponding error percentage from the total number of cases. 

The second table illustrates the fitness of the pruned tree. It has three columns: 

•  Size: the size of the pruned tree. It is either less than or equal to that of the unpruned tree depending upon the extent of 
the pruning performed by C4.5. 

• Errors: the number of classification errors and their corresponding actual error percentage after pruning. 
•  Estimate: the estimated error percentage of the tree after pruning, useful when comparing with the actual percent- age. 

 

D. Result Analysis 

The output generated by C4.5rules at the default verbosity level is interpreted as follows: 
Firstly, the header. 

1. Same as that of C4.5 Secondly, the set of generated rules. 

1. One set of rules is generated for each pruned decision tree. 

2. The set of rules usually consists of at least one default rule, which is used to classify unseen instances when no other rule 
applies.(e.g., Play). 
3. Every enumerated rule is composed of attribute-values and a  resulting  classification, followed  by  a  percentage  which 
represents the accuracy of that rule. 
(e.g., Rule 1: if ”outlook = sunny” but ”humidity ¿ 75” then 

”Don’t Play”; according to C4.5rules, this rule is accurate 63 

TABLE II 

TR A I N I N G DATA O F GO L F 

 
 

(a) 
 

(b) 
 

classified as 

 
9 

  
(a) class play 

  
5 

 
(b) class Dont 
play 

 
 
 
of the time, and thus has a 37 error margin) 

Thirdly, the rules are evaluated against the training data instances to test the fitness of each. 
The rule table has six columns: 

1.Rule: the number assigned by C4.5rules to each rule. 

2.Size: the size of the rule. That is, the number of antecedents of which it is composed. 
3. Error: the error margin of the rule. 

4. Used: the number of times the rule was used, regardless of correctness, in classifying the training instances. The sum of this 
column yields the total number of cases. 
5. Wrong: the number of times a rule has been misused, and the corresponding percentage of this value from the previous 
column. 
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6. Advantage: the difference between the number of times a rule has been used correctly and the number of times it has been 
used incorrectly. 
Fourthly, C4.5rules sums up the number of correct and incorrect classifications in a table. Both the rows and columns have  the  
same  headers,  but  there  is  a  distinction between them: 
The rows of the table are the classes available for use in the classification process. 

The columns of the table are the classes chosen during classification. 
The cell where a particular row and column intersect may either contain a number or not. 
1. If the cell does not contain a number, then no tested instances under that cell’s row class have been classified by its 
corresponding column class. 
2. Otherwise, the number represents the number of instances of the row class which have been classified as a member of 
the corresponding column class. 
3.Misclassifications occur when the row and column classes of a cell do not match. 
For example, in the table below: 

9  instances  of  the  known  class  ”Play”  were  correctly classified  using  the  generated  rules  as  members  of  class 
”Play”. 

5 instances of the known class ”Don’t Play” were correctly classified  using  the  generated  rules  as  members  of  class 
”Don’t Play”. 

0 instances were incorrectly classified. 

9 + 5 = 14 = the total number of instances tested. 

 

k) Summary:  
 
Rule 1 suggests that if ”outlook = sunny” 

         and”humidity greater than 75” then ”Don’t Play”. 

      Rule 2 suggests that if ”outlook = overcast” then ”Play”.  

      Rule 3 suggests that if ”outlook = rain” and ”windy = true”         then ”Don’t Play”. 

     Rule 4 suggests that if ”outlook = rain” and ”windy = false” 

then”Play”.Otherwise,”Play” is the default class.                                     
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