
1 | P a g e

DR.P HUNDEEP,

DR.G SRIVIDYA, J. Nonlinear Anal. Optim. Vol. 10(3) (2019), March 2019

DR.T SUNEEL.

Journal of Nonlinear Analysis and Optimization

Vol. 10(3) (2019), March 2019

https://ph03.tci-thaijjo.org/

ISSN : 1906-9685
 J.Nonlinear

Anal. Optim

Simulation Of Image Retrieval Techniques For Effective Decision Making

System

DR.P HUNDEEP, Associate Professor, Department of CSE DHRUVA INSTITUTE OF ENGINEERING
& TECHNOLOGY, HYDERABAD, hundeepsurya11@gmail.com.

DR.G SRIVIDYA, Associate Professor, Department of CSE ELLENKI COLLEGE OF ENGINEERING

& TECHNOLOGY, HYDERABAD, Veerabhadrasrividya@gmail.com.
DR.T SUNEEL, Professor, Department of CSE DHRUVA INSTITUTE OF ENGINEERING &

TECHNOLOGY, HYDERABAD, suneelkumarvarma2013@gmail.com.
ABSTRACT

Map-reduce is a programming model used for processing data intensive applications. More than ten thousand

distinct Map-reduce programs have been implemented internally at Google over the past four years, and an average

of one hundred thousand Map-reduce jobs are executed on Google’s clusters every day, processing a total of more

than twenty petabytes of data per day. Divisible Load Theory(DLT) is applied to the existing Map-reduce system to
increase the efficiency of the system. In this work, a new fault tolerant Map-reduce system is developed which is

applicable to static type of scheduling(DLT). This paper proposes a new algorithm –Two Level Fault Tolerant

Partitioning (TFTP) which identifies the faulty processor and re-executes the data by scheduling it to the straggler

processors. This algorithm mainly ensures the completion of the job at the nearest estimated time. And

Checkpointing along with TFTP reduces the redundancy in the system by re-executing the jobs from a saved state

rather than re-executing it from the beginning. There is some overhead in checkpointing the data. By having a

tradeoff between the Fault Probability and checkpointing interval, the efficiency of the system is improved by the

proposed method. .

Keywords: Map-Reduce, Divisible Load Theory, Fault Tolerance, Straggler, Checkpoint.

1 INTRODUCTION

Map-reduce is a programming paradigm for data

intensive applications over distributed environment.

User submits the data and defines its computation as

two functions, namely, Map and Reduce. Map

function is typically executed by a number of map
tasks, each of which, operate simultaneously over a

split of the user input data, to generate a set of

intermediate key-value pairs. The output lists of

every individual mapper are hashed into a R space

domain. Splits of these intermediate results are then

read as input by the corresponding reduce tasks

which perform the user defined Reduce function.

Each reducer in the system takes the output list from

the corresponding hash space and reduces them into a

final list of output values. Hence this framework

allows parallel processing over independent partitions
of the input data by every Map task and Reduce task

during the Map phase and Reduce phase respectively.

This functional model with map and reduce

operations allows us to parallelize large computations

easily. The input data is split up into equal partitions

and submitted to the mappers. Since each mapper has

different efficiency some of the mappers finishes its

job and waits for the other mappers to complete their

execution which increases the idle time of the whole

system. To increase the efficiency of the system, the

split of input data should vary. Divisible Load Theory
(DLT) is used to split the data based on the capacity

and efficiency of the mappers.The data is splitted up

such that all the mappers finishes their job at the

same time.

Our work mainly concerns about the Fault Tolerance

in a map-reduce system with Divisible Load Theory.

A Fault is generally a system failure due to

overloads, power failure, and data loss etc. The

occurrence of fault generally results in either

incompletion of the job or delay in completion of the
job. Our work proposes a novel algorithm which

ensures the completion of the job at the estimated

time. The slow performing nodes are taken as backup

nodes and are put up in stragglerpool(backup pool).

2 | P a g e

Whenever a node becomes faulty the data given to

that node is assigned to various nodes taken from

straggler pool. The number of nodes is increased to

finish the job at the estimated time thus ensuring the

completion of the job very closer to the deadline.

2 RELATED WORKS

The history of research and development in the field

of Map-reduce systems started with the development

of simplified data processing over large clusters[1],

through the early adoption of efficient and fast search

technique in Google search engine. Map-reduce was

introduced by Google in 2004.It was later

implemented as 'Cloud MapReduce' on top of

Amazon Cloud OS by Accenture Technology Labs.

An open source project supporting Map-reduce
framework, by name 'HadoopMapReduce' was also

developed by the Apache software foundation. Map-

reduce could be applied for different kind of jobs. A

few examples are Word Count, Distributed Grep,

Count of URL Access Frequency, Reverse Web-Link

Graph, Inverted Index and Distributed Sort[1]. The

execution overview of Map-reduce system is that the

Job(v) is splitted and submitted to the mappers as

input key-value pairs.The mappers produce the

intermediate results as intermediate key-value pairs

which are then hashed into R space domain of
reducers. The Reducers then take the intermediate

key value pairs and produces the actual result [1].

Divisible Load Theory (DLT) is a framework for

partitioning the divisible load into independent

chunks for processing by homogeneous nodes. The

partitioning ensures fair splitting of the input data in

order to optimize the schedule length. The concept

has been applied in linear algebra, image processing,

video and multimedia broadcasting, database

searching and in processing of large distributed files

[2]. Azure Map-reduce is runtime architecture for

Map-reduce clusters and the challenges in it includes
data storage, consistency and scalability [3].With

further advancements Map-reduce is implemented on

top of a cloud operating system with minimal lines of

code and increased efficiency, scalability, and speed

[4]. The effect of several component inter-connect

topologies, data locality, and software and hardware

failures on overall Map-reduce application

performance is explored in [5] .The results of using

the proposed simulator indicate that network

topology choices and scheduling decisions can have a

large impact on performance. The simulator also
helps in designing new high performance Map-

reduce setups and in optimizing existing ones. The

Divisible Load Theory models are categorized into

different scenarios and present the mathematical

model to each scenario in [6]. Some of the

classifications discussed in this work are as follows.

The application to which DLT is applied could be

either star graph or tree graph model. Based on the

number of rounds DLT is used, the implementation

could be of one round or multi round type. If
initialization cost is involved, as is the practical case,

the model is termed to be using affine cost, else it is

said to be of linear cost. Top ten reasons to use

Divisible Load Theoryare listed in [7]. The work is a

premiere enlightening the advantages of DLT. Few of

the areas discussed include scalability,

interconnection topologies and DLT’s optimality

principle. In the later Map-reduce era, many

scheduling algorithms have been proposed. A

decentralized algorithm performs intra cluster and

inter cluster (grid) job scheduling are proposed in [8].

In their work, DLT is applied along with Least Cost.
A detailed research on real time divisible load

scheduling with set up costs and advance

reservationsare discussed in [9].A novel algorithm is

also presented for real time divisible scheduling

based on feedback control and admission control.

Various Fault Tolerant strategies are proposed in the

Map-reduce system to increase the consistency of the

system and various techniques like checkpointing,

Replication etc. Various Checkpointing strategies like

mean failure checkpointing, standard deviation based

checkpointing are proposed in [10]. Combined fault
tolerance is yet another efficient strategy in which a

tradeoff should be made between checkpointing and

replication. Passive replication is an improved fault

tolerant strategy for the mapreducesystem and is

discussed in [11].The heuristics to schedule backups,

move backup instances, and select backups upon

failure for fast recovery is also explored in [11].

Straggler nodes have been clearly defined which

contributes a lot to increase the efficiency of the

system is presented in [12]. A framework to analyze

the tradeoff between communication costs and

decoding accuracy is also discussed. The various
trends in check pointing the data such as coordinated

check pointing, Uncoordinated or independent check

pointing are discussed in [13].

3 OVERALL ARCHITECTURE

If a mapper or reducer becomes faulty, which may

leadto double the time to finish the job and the cost is

also doubled. A general fault tolerant system only

ensures that the job will be finished with the

degraded performance. It does not give any
assurances about the deadline. To overcome this we

propose a Two Level Fault Tolerant

Partitioning(TFTP) algorithm. The Architecture

mainly consists of Fault Tolerance Daemon (FTD)

which monitors all the nodes in the system

3 | P a g e

continuously and detects faulty nodes if any. The job

given to that faulty node is identified and is given to

the set of nodes from straggler pool to ensure the

completion of that job in theestimatedtime.The

proposed architecture is shown in Fig.1. The
proposed system mainly contains two major systems

such as Fault Tolerance system and map reduce

system, which mainly consists of Fault Tolerance

Daemon (FTD) and scheduling module. The

functionality of each module is discussed in the

following paragraphs briefly.

Fig 1.Architecture of the proposed system

3.1 FTD

FTD is a Fault Tolerance Daemon which constantly
monitors the Mappers and Reducers for the

occurrence of any fault. It constantly communicates

with each node and provides the status of the node at

regular intervals. If any node fails to response, the

node is assumed to be the faulty node. The failure is

mainly due to various reasons like hardware failure,

communication failure, unexpected events like

external power failure etc. The nodes which fail due

to any of the above reasons are called Faulty nodes.

3.2 SCHEDULER

Scheduler is responsible for scheduling the nodes in

case of occurrence of faults. FTD identifies faulty

nodes if any, the information about it is passed to the

scheduler. The scheduler then finds the job that was

being carried out by the faulty node. It then selects a

set of nodes from the straggler pool and estimate the
efficiency of each node. Divisible Load Theory is

applied over the stragglernodes. Based on the

capabilities of straggler nodes, the data is splitted up

and given. Since Divisible Load Theory is applied to
the straggler nodes, all the nodes complete their

execution almost at the same deadline. This scheduler

can be implemented in both map and reduce

phases.The Scheduler is also responsible for

scheduling multi user jobs.

3.3 TFTP

TFTP refers to Two Level Fault Tolerant Partitioning

algorithm. In TFTP, a Fault Tolerance Daemon

constantly monitors the nodes.If any of the nodes
become faulty during the execution of the job, the

job given to those nodes are identified and re-

executed on backups with applied DLT. Only the

required number stragglers nodes are used from back

up to meet out the deadline constraint as first level

fault tolerant. Remaining straggler nodes in the

straggler pool are kept as backup as the second level

fault tolerant if there is any failure during the

4 | P a g e

execution of faulty jobs over straggler nodes which

are selected at the first level. That is why it is named

as Two Level Fault Tolerant Partitioning (TFTP),

which may be extended to any number of levels.

TFTP involves three phases namely Straggler node
detection, Faulty node detection and Re-execution on

backups. In the proposed system, user submits the job

(V) to the master node. Then the straggler nodes are

identified and are taken as backups. The master splits

the job based on the capability of the mappers by

applying the concept of Divisible Load Theory. The

actual execution takes place then. When a node is

reported to be faulty by Fault Tolerance Daemon, re-

execution is done on straggler nodes present in the

backups.The straggler node detection, faulty node

detection, re-execution on backups are explained in

the following paragraphs.

3.3.1. STRAGGLER NODE DETECTION

The map-reduce system has many nodes associated

with it and the speeds of execution of each node vary

widely (some of them are too fast while the other are

slow performing).The slow performing nodes which

are called as straggler nodes has to be excluded from

the system to make it efficient and the excluded

nodes can be used as backup nodes that can be used

in case of any node failure. These straggler nodes
have to be detected before the start of any process.

The straggler nodes are slow performing both in

computation and communication time. The total time

for execution includes computation and

communication time. Higher the total time, slower

the performance. Hence the total time of execution

plays a major role in the selection of straggler node.

These nodes vary greatly in the performance.

Forexample consider a node, counting number of

words in a file. The progress rate of each node should

be monitored at certain intervals and they should not

vary widely. The nodes whose progress rate varies
much (more than 10%) from the standard deviation

of the progress rate of the all nodes are considered to

be straggler nodes in our proposed method.Since the

slow performing straggler nodes are taken as

backups,the execution of the job is expected to be

completed effectively within its deadline only with

high performance computing nodes. And hence DLT

can be applied efficiently over the nodes with high

performance. For every node in the cluster,

communication time and computation time are

calculated. The Progress rate of each node is
calculated at regular intervals with a sample data and

the variation in progress rate should be within the

limit. Based on this Probability of being Straggler

node, P is calculated and finally straggler nodes are

selected based on this P value.

3.3.2. FAULTY NODE DETECTION

A Fault Tolerance Daemon is made to monitor the

system continuously to find the faulty nodes in the
system. It continuously monitors by communicating

with the nodes at regular intervals thus providing

instant information about the status of the nodes. For

each node, initially establish the connection and

monitor it at intervals until the total job is completed,

beyond which there is no need for monitoring i.e

fault tolerance daemon (FTD) runs until our total job

is accomplished. If incase a node completed its

assigned work, then that particular node need not be

monitored.

3.3.3 RE-EXECUTION ON STRAGGLER

NODES

Whenever a node is found to be faulty, the job

assigned to the faulty node is assigned to straggler

nodes taken from the straggler pool thus making sure

that the job gets completed. Previously the straggler

nodes are identified, and the other nodes are

constantly monitored. If a node is found to be faulty,

the master has to identify the split that is assigned to

the faulty node at the start of the execution, remove

the straggler nodes from the back up pool. And then
assign that split identified to the straggler nodesusing

DLT and complete the execution of the job within the

deadline constraint, without performance

degradation.

5 TFTP WITH CHECKPOINTING

In TFTP, whenever a fault occurs, the job assigned to

that faulty nodes is identified and assigned to the

backup nodes and gets re-executed. This is not

efficient in all scenarios. Consider a scenario where

in 90% of the job execution is comleted and the node
gets failed. In this case, the job has to be re-executed

completely from the beginning which causes a big

overhead. This overhead can be avoided by check

pointing the data based on the failure rate of each

node. Each node checkpoints the data at their

specified interval in the master, during the process

execution time. In case, where every node tries to

checkpoint its data at the master at same time will

create a bottleneck at the master. To avoid this

bottleneck, the nodes have to obtain a lock on the

master to checkpoints its data. Maximum number of
nodes that can be handled by the master is fixed

dynamically based on the capacity of the Master.

When there is a failure, the master identifies the last

saved data of that faulty node and assigns the

remaining job to the backup nodes. Whenever a node

5 | P a g e

checkpoints its data, previously saved data is

overwritten by the new data. Failure Rate in the

algorithm denoted by FR is based on the previous

failures of any particular node.This is maintained in a

log for future reference.The Standard Deviation(SD)

is calculated based on the Failure Rates of the

nodes.Then, Checkpointing Time Interval(CTI) is

computed. For every CTI seconds, the node backsup

the data in the master.To avoid the bottle neck at the

master, a lock and release strategy has been used.

6 ALGORITHM

The three phases of Two Level Fault

Tolerant Partitioning (TFTP) are defined clearly in

this part. The feasibility of the algorithms is tested in

real-time scenarios.

Algorithm : STRAGGLER NODE

DETECTION ALGORITHM

Name : Straggler Node Detection

Input : Set of nodes, Input data set (V) , number of

nodes (n).

Output : Computation time, Communication time,

response time, Deviation rate, Set of straggler nodes.

For(each node)

{

 //Initially every node is Normal node

 current_node.straggler=false

 //Start time of Progress

 S=0

 //Node processes the data

 Node.send(new File("SampleFile"));

 Master.receive("Result");

 //Finish time of the progress

 F=CurrentTimeInMaster

 //Estimated Progress Rate
 Epr=(F - S)/100

}

//Straggler Critical Time

SCT=0

//Straggler Count

S_count = 0

i=0;

For(each node in the cluster)

{

//Communication Start Time
 CST=0

 Node.send(new File("SampleFile"));

 Master.receive("Result");

 //Communication Finish Time

 CFT=CurrentTimeInSlave

 //Communication Time

 CommT=CFT-CST

 //Probability of being Straggler node

 P = 0

 //Job Start Time

 JST=0

 For(every 100 milliseconds && Job not done)

 {

 //Current Progress Rate

 Cpr = progress rate from the node.

 //Variation in Progress Rate

 Vpr = (Epr – Cpr) / Epr

 P = P + Vpr

 }

 //Job Finish Time

 JFT=CurrentTimeInMaster

 CompT= JFT - SFT

 TotalTime = (CompT + CommT)/1000
TotalTimeArray[i]=TotalTime

P_Array[i]=P

i=i+1

}

//sort nodes based on TotalTime and P values

For i=0 to n-1

{

For j=i+1 to n

{

If(TotalTimeArray[i]<TotalTimeArray[j])

{

//sorting in the decreasing order of total time
Swap(TotalTimeArray[i],TotalTimeArray[j]);

//sorting the corresponding probability value

Swap(P_Array[i],P_Array[j]);

}

//total time taken by two nodes are same

Else if(TotalTimeArray[i]==TotalTimeArray[j])

{

//sort based on the deviation rate(P value)

If(P_Array[i]<P_Array[j])

{
Swap(TotalTimeArray[i],TotalTimeArray[j]);

Swap(P_Array[i],P_Array[j]);

}

}

}

6 | P a g e

}

//number of straggler nodes dynamicallychoosen

//based on the size of the data, number of total nodes

//and also based on failure rate.
S_Count= sizeof(V)/n * n/3 *n/100

For i=1 to S_Count

{

//making the ith node as straggler

 Node[i].straggler=true

//adding the node to straggler pool

 Straggler_pool.add(Node[i])

}

Algorithm : FAULTY NODE DETECTION

ALGORITHM

Name : Faulty Node Detection

Input : Set of Mappers and Reducers

Output : Faulty Nodes(if any)

For(each slave)
{

Establish the connection

 For(every 1 second)

 {

 If(Total job completed)

 Return (No need to

monitor)

 If(current slave completes its job)

 Break (Go for next slave)

 If(connection not alive)

 Report the client as faulty

 }
}

Algorithm : RE-EXECUTION ON

STRAGGLER NODES

Name: Re-execution on stragglers

Input: Job of faulty node, Reference to Straggler pool

Output: Processed data

For(each slave)

{

If(fault occurred)

{

Identify the faulty client

Identify the split assigned to that faulty client

Retrieve the straggler nodes from the straggler

poolAssign the split to that straggler nodes using

DLT

For(each worker node)
{

 Read the split from the HDFS

 // w- word to be counted

 For(each word w in the split)

 {

 EmitIntermediate(w,(frequency==null)?1:fre

quency+1)

 }

 Send the result to the Reducer

 }

 Accumulate the results from the reducer

}
}

Algorithm : TFTP WITH

CHECKPOINTING

WORKER NODE:

Compute the failure rate of the node as FR

//SD-Standard Deviation, TI-Time Interval

∑(mean(FR)2 – TI2)

//Checkpoint Time Interval

CTI=(Estimated Completion time /SD)*Processing

time for 1MB data

For(every CTI seconds and Job not completed)

{

 If(MasterLock> 0)

 {

 //Obtain the lock on Master

 MasterLock = MasterLock – 1

 Serialize the data as object

 Send the Object to Master

 Send the reference to remain split

 //Release the lock on Master

 MasterLock = MasterLock+ 1

 }

 Else

 {

 Continue execution

 Wait for the release of lock

 }

}

MASTER NODE:

For(every node in the cluster)

{

Allocate the memory needed for check pointing

7 | P a g e

Store the reference of the split assigned

}

For(every request)

{

Receive the object from the Worker nodes
Receive the corresponding reference to the split

Data=CurrentData

ProcessedData=OldData+NewlyProcessedData

//Last Checkpointing Time

CPT=CurrentTime

}

7 PERFORMANCE EVALUATION

The simulation is carried out in HDFS (Hadoop

Distributed File System) with a cluster size of ten

nodes and varying size of Jobs. Gutenberg data set is

taken and is used to evaluate the system. The
standard size of an e-book is taken as approximately

1M. The graph in Fig 2 is plotted by varying the

number of e-books with execution time to complete

the execution of word-count of e-books. The graph in

Fig 2shows that TFTP takes a negligible additional

time compared to default HadoopMap-Reduce

system without fault. Thus even on occurrence of

faults, the jobs are completed at the near estimated

time.

Fig 2 Normal Map-reduce system VS Map-reduce

system with TFTP

Fig 3 TFTP with Checkpointing VS TFTP without

Checkpointing

The graph in Fig 3 compares the TFTP without

Check pointing and TFTP with check pointing. When

fault occurs during the initial stages, the

checkpointing is inefficient compared to TFTP

without Checkpointing. But as Job proceeds, the

occurrence of fault at the later stages of job makes

this method most efficient one compared to TFTP
without Checkpointing.

The graph in Fig 3 is also plotted by varying the

number of e-books with execution time to complete

the execution of word-count of e-books. The graph in

Fig 4 is about the check pointing overhead. And it

shows that the check pointing time is very negligible.

so a Map-reduce system without fault also tend to

finish its job at the near estimated time.

Fig 4 Checkpointing Overhead

8 CONCLUSION

As Parallel systems like Map-Reduce systems

become increasingly prevalent, improving the fault

behavior of these systems is very important. This

paper initially proposes an algorithm TFTP for

handling faults but at times the re-execution is

considered to be a big overhead. To overcome that we

propose a check pointing strategy which is dynamic

in nature? The check pointing also has a overhead

due to the unnecessary checkpoints. But later we

proved that it is very negligible due to its dynamic

nature. Since it is negligible, it does not affect the

8 | P a g e

efficiency of the system.

REFERENCES

[1] Jeffrey Dean and Sanjay Ghemawat (2008),
‘MapReduce: Simplified Data Processing On Large

Clusters’, Communications of the ACM, Vol. 51,

Issue 1, pp. 107-113.

[2] BerlińskaJandDrozdowski M (2011), ‘Scheduling

Divisible MapReduceComputations’,Journal Of

Parallel Distributed Computing, Vol.71, Issue 3,pp.

450-459.

[3] ThilinaGunarathne, Tak-Lon Wu, Judy Qiu and

Geoffrey Fox (2010), ‘MapReduceIn The Clouds For

Science’,2nd IEEE International Conference On

Cloud Computing Technology and Science, pp. 565-

572.
[4] Huan Liu and Dan Orban(2011), ‘Cloud

MapReduce: A MapReduceImplementation On Top

Of A Cloud Operating System’,International

Symposium onCluster, Cloud and Grid Computing

(CCGrid), 11th IEEE/ACM, pp. 467-47.

[5] Guanying Wang, Ali R. Butt, PrashantPandey and

Karan Gupta(2009), ‘A Simulation Approach To

Evaluating Design Decisions In MapReduce Setups’,

IEEE International Symposium on Modeling,

Analysis & Simulation of Computer and

Telecommunication Systems. MASCOTS '09, pp. 1-
11.

[6] Beaumont, H. Casanova, A. Legrand, Y. Robert

and Y. Yang (2005), ‘Scheduling Divisible Loads On

Star And Tree Networks: Results And Open

Problems’, IEEE Transactions on Parallel and

Distributed Systems, Vol. 16, Issue 3, pp. 207-218.

[7] Thomas G. Robertazzi (2003), ‘Ten Reasons To

Use Divisible Load Theory’,IEEE Journal on

Computer, Vol.36, Issue.5,pp. 63-68.

[8] SivakumarViswanathan, BharadwajVeeravalli and

Thomas G. Robertazzi (2007), ‘Resource-Aware

Distributed SchedulingStrategies for Large-Scale
Computational Cluster/Grid Systems’, IEEE

Transactions On Parallel And Distributed Systems,

Vol.18, Issue 10, pp.1450-1461.

[9] Mamat and Anwar (2011), ‘Real-Time Divisible

Load Scheduling for Cluster Computing’, Computer

Science and Engineering: Theses, Dissertations, and

Student Research Paper 27.

[10] GaoShuai, Huang Ting-Lei and GanGuo-

Ning(2010), ‘An Improved Schedule Of MapReduce

Programming Environment In Cloud Computing’,

International Conference on Intelligent Computing
and Integrated Systems (ICISS), pp. 665-668.

[11] Qin Zheng(2010).., ‘Improving MapReduce

Fault Tolerance in the Cloud’ ,IEEE conference on

parallel and distributed computing.

[12] H.T.Kung, Chit-Kwan Lin and Dario

Vlah(Harward university), ‘Cloud Sense: Continuous

fine grain cloud monitoring with compressive

sensing’, IEEE conference on parallel and distributed

computing.

[13] Thomas C.Bressoud, Michael A.Kozuch(2009),
‘Cluster Fault-Tolerance: An Experimental

Evaluation of check pointing and Map Reduce

through simulation’, Journal of cluster cloud and grid

computing.

