DR.P HUNDEEP,
DR.G SRIVIDYA,
DR.T SUNEEL.
Journal of Nonlinear Analysis and Optimization
\ol. 10(3) (2019), March 2019
https://ph03.tci-thaijjo.org/

ISSN : 1906-9685

J. Nonlinear Anal. Optim. Vol. 10(3) (2019), March 2019

J.Nonlinear
Anal. Optim

Simulation Of Image Retrieval Techniques For Effective Decision Making
System

DR.P HUNDEEP, Associate Professor, Department of CSE DHRUVA INSTITUTE OF ENGINEERING
& TECHNOLOGY, HYDERABAD, hundeepsuryall@gmail.com.
DR.G SRIVIDYA, Associate Professor, Department of CSE ELLENKI COLLEGE OF ENGINEERING
& TECHNOLOGY, HYDERABAD, Veerabhadrasrividya@gmail.com.
DR.T SUNEEL, Professor, Department of CSE DHRUVA INSTITUTE OF ENGINEERING &
TECHNOLOGY, HYDERABAD, suneelkumarvarma2013@gmail.com.
ABSTRACT

Map-reduce is a programming model used for processing data intensive applications. More than ten thousand
distinct Map-reduce programs have been implemented internally at Google over the past four years, and an average
of one hundred thousand Map-reduce jobs are executed on Google’s clusters every day, processing a total of more
than twenty petabytes of data per day. Divisible Load Theory(DLT) is applied to the existing Map-reduce system to
increase the efficiency of the system. In this work, a new fault tolerant Map-reduce system is developed which is
applicable to static type of scheduling(DLT). This paper proposes a new algorithm —Two Level Fault Tolerant
Partitioning (TFTP) which identifies the faulty processor and re-executes the data by scheduling it to the straggler
processors. This algorithm mainly ensures the completion of the job at the nearest estimated time. And
Checkpointing along with TFTP reduces the redundancy in the system by re-executing the jobs from a saved state
rather than re-executing it from the beginning. There is some overhead in checkpointing the data. By having a
tradeoff between the Fault Probability and checkpointing interval, the efficiency of the system is improved by the

proposed method. .

Keywords: Map-Reduce, Divisible Load Theory, Fault Tolerance, Straggler, Checkpoint.

1 INTRODUCTION

Map-reduce is a programming paradigm for data
intensive applications over distributed environment.
User submits the data and defines its computation as
two functions, namely, Map and Reduce. Map
function is typically executed by a number of map
tasks, each of which, operate simultaneously over a
split of the user input data, to generate a set of
intermediate key-value pairs. The output lists of
every individual mapper are hashed into a R space
domain. Splits of these intermediate results are then
read as input by the corresponding reduce tasks
which perform the user defined Reduce function.
Each reducer in the system takes the output list from
the corresponding hash space and reduces them into a
final list of output values. Hence this framework
allows parallel processing over independent partitions
of the input data by every Map task and Reduce task
during the Map phase and Reduce phase respectively.
This functional model with map and reduce
operations allows us to parallelize large computations

1|Page

easily. The input data is split up into equal partitions
and submitted to the mappers. Since each mapper has
different efficiency some of the mappers finishes its
job and waits for the other mappers to complete their
execution which increases the idle time of the whole
system. To increase the efficiency of the system, the
split of input data should vary. Divisible Load Theory
(DLT) is used to split the data based on the capacity
and efficiency of the mappers.The data is splitted up
such that all the mappers finishes their job at the
same time.

Our work mainly concerns about the Fault Tolerance
in a map-reduce system with Divisible Load Theory.
A Fault is generally a system failure due to
overloads, power failure, and data loss etc. The
occurrence of fault generally results in either
incompletion of the job or delay in completion of the
job. Our work proposes a novel algorithm which
ensures the completion of the job at the estimated
time. The slow performing nodes are taken as backup
nodes and are put up in stragglerpool(backup pool).

Whenever a node becomes faulty the data given to
that node is assigned to various nodes taken from
straggler pool. The number of nodes is increased to
finish the job at the estimated time thus ensuring the
completion of the job very closer to the deadline.

2 RELATED WORKS

The history of research and development in the field
of Map-reduce systems started with the development
of simplified data processing over large clusters[1],
through the early adoption of efficient and fast search
technique in Google search engine. Map-reduce was
introduced by Google in 2004.t was later
implemented as 'Cloud MapReduce' on top of
Amazon Cloud OS by Accenture Technology Labs.
An open source project supporting Map-reduce
framework, by name 'HadoopMapReduce' was also
developed by the Apache software foundation. Map-
reduce could be applied for different kind of jobs. A
few examples are Word Count, Distributed Grep,
Count of URL Access Frequency, Reverse Web-Link
Graph, Inverted Index and Distributed Sort[1]. The
execution overview of Map-reduce system is that the
Job(v) is splitted and submitted to the mappers as
input Kkey-value pairs.The mappers produce the
intermediate results as intermediate key-value pairs
which are then hashed into R space domain of
reducers. The Reducers then take the intermediate
key value pairs and produces the actual result [1].
Divisible Load Theory (DLT) is a framework for
partitioning the divisible load into independent
chunks for processing by homogeneous nodes. The
partitioning ensures fair splitting of the input data in
order to optimize the schedule length. The concept
has been applied in linear algebra, image processing,
video and multimedia broadcasting, database
searching and in processing of large distributed files
[2]. Azure Map-reduce is runtime architecture for
Map-reduce clusters and the challenges in it includes
data storage, consistency and scalability [3].With
further advancements Map-reduce is implemented on
top of a cloud operating system with minimal lines of
code and increased efficiency, scalability, and speed
[4]. The effect of several component inter-connect
topologies, data locality, and software and hardware
failures on overall Map-reduce application
performance is explored in [5] .The results of using
the proposed simulator indicate that network
topology choices and scheduling decisions can have a
large impact on performance. The simulator also
helps in designing new high performance Map-
reduce setups and in optimizing existing ones. The
Divisible Load Theory models are categorized into
different scenarios and present the mathematical
model to each scenario in [6]. Some of the

2|Page

classifications discussed in this work are as follows.
The application to which DLT is applied could be
either star graph or tree graph model. Based on the
number of rounds DLT is used, the implementation
could be of one round or multi round type. If
initialization cost is involved, as is the practical case,
the model is termed to be using affine cost, else it is
said to be of linear cost. Top ten reasons to use
Divisible Load Theoryare listed in [7]. The work is a
premiere enlightening the advantages of DLT. Few of
the areas discussed include scalability,
interconnection topologies and DLT’s optimality
principle. In the later Map-reduce era, many
scheduling algorithms have been proposed. A
decentralized algorithm performs intra cluster and
inter cluster (grid) job scheduling are proposed in [8].
In their work, DLT is applied along with Least Cost.
A detailed research on real time divisible load
scheduling with set up costs and advance
reservationsare discussed in [9].A novel algorithm is
also presented for real time divisible scheduling
based on feedback control and admission control.
Various Fault Tolerant strategies are proposed in the
Map-reduce system to increase the consistency of the
system and various techniques like checkpointing,
Replication etc. Various Checkpointing strategies like
mean failure checkpointing, standard deviation based
checkpointing are proposed in [10]. Combined fault
tolerance is yet another efficient strategy in which a
tradeoff should be made between checkpointing and
replication. Passive replication is an improved fault
tolerant strategy for the mapreducesystem and is
discussed in [11].The heuristics to schedule backups,
move backup instances, and select backups upon
failure for fast recovery is also explored in [11].
Straggler nodes have been clearly defined which
contributes a lot to increase the efficiency of the
system is presented in [12]. A framework to analyze
the tradeoff between communication costs and
decoding accuracy is also discussed. The various
trends in check pointing the data such as coordinated
check pointing, Uncoordinated or independent check
pointing are discussed in [13].

3 OVERALLARCHITECTURE

If a mapper or reducer becomes faulty, which may
leadto double the time to finish the job and the cost is
also doubled. A general fault tolerant system only
ensures that the job will be finished with the
degraded performance. It does not give any
assurances about the deadline. To overcome this we
propose a Two Level Fault Tolerant
Partitioning(TFTP) algorithm. The Architecture
mainly consists of Fault Tolerance Daemon (FTD)
which monitors all the nodes in the system

continuously and detects faulty nodes if any. The job
given to that faulty node is identified and is given to
the set of nodes from straggler pool to ensure the
completion of that job in theestimatedtime.The
proposed architecture is shown in Fig.l. The
proposed system mainly contains two major systems

SapReduce Syvstem

-
SCHEDULER

PHELY
¥ ¥ .
:.1:: | S A |
.-1-— i e —

such as Fault Tolerance system and map reduce
system, which mainly consists of Fault Tolerance
Daemon (FTD) and scheduling module. The
functionality of each module is discussed in the
following paragraphs briefly.

Fault Tederance Svenem

Famli Tolerancs
rasman (FTDNG
Aosinonng

| Slappaws and

Reducers

J SUHEDULER - PRELD

I

‘ TFTP

Fig 1.Architecture of the proposed system

3.1 FTD

FTD is a Fault Tolerance Daemon which constantly
monitors the Mappers and Reducers for the
occurrence of any fault. It constantly communicates
with each node and provides the status of the node at
regular intervals. If any node fails to response, the
node is assumed to be the faulty node. The failure is
mainly due to various reasons like hardware failure,
communication failure, unexpected events like
external power failure etc. The nodes which fail due
to any of the above reasons are called Faulty nodes.

3.2 SCHEDULER

Scheduler is responsible for scheduling the nodes in
case of occurrence of faults. FTD identifies faulty
nodes if any, the information about it is passed to the
scheduler. The scheduler then finds the job that was
being carried out by the faulty node. It then selects a
set of nodes from the straggler pool and estimate the
efficiency of each node. Divisible Load Theory is

3|Page

applied over the stragglernodes. Based on the
capabilities of straggler nodes, the data is splitted up
and given. Since Divisible Load Theory is applied to
the straggler nodes, all the nodes complete their
execution almost at the same deadline. This scheduler
can be implemented in both map and reduce
phases.The Scheduler is also responsible for
scheduling multi user jobs.

3.3 TFTP

TFTP refers to Two Level Fault Tolerant Partitioning
algorithm. In TFTP, a Fault Tolerance Daemon
constantly monitors the nodes.If any of the nodes
become faulty during the execution of the job, the
job given to those nodes are identified and re-
executed on backups with applied DLT. Only the
required number stragglers nodes are used from back
up to meet out the deadline constraint as first level
fault tolerant. Remaining straggler nodes in the
straggler pool are kept as backup as the second level
fault tolerant if there is any failure during the

execution of faulty jobs over straggler nodes which
are selected at the first level. That is why it is named
as Two Level Fault Tolerant Partitioning (TFTP),
which may be extended to any number of levels.
TFTP involves three phases namely Straggler node
detection, Faulty node detection and Re-execution on
backups. In the proposed system, user submits the job
(V) to the master node. Then the straggler nodes are
identified and are taken as backups. The master splits
the job based on the capability of the mappers by
applying the concept of Divisible Load Theory. The
actual execution takes place then. When a node is
reported to be faulty by Fault Tolerance Daemon, re-
execution is done on straggler nodes present in the
backups.The straggler node detection, faulty node
detection, re-execution on backups are explained in
the following paragraphs.

3.3.1. STRAGGLER NODE DETECTION

The map-reduce system has many nodes associated
with it and the speeds of execution of each node vary
widely (some of them are too fast while the other are
slow performing).The slow performing nodes which
are called as straggler nodes has to be excluded from
the system to make it efficient and the excluded
nodes can be used as backup nodes that can be used
in case of any node failure. These straggler nodes
have to be detected before the start of any process.
The straggler nodes are slow performing both in
computation and communication time. The total time
for execution includes computation and
communication time. Higher the total time, slower
the performance. Hence the total time of execution
plays a major role in the selection of straggler node.
These nodes vary greatly in the performance.
Forexample consider a node, counting number of
words in a file. The progress rate of each node should
be monitored at certain intervals and they should not
vary widely. The nodes whose progress rate varies
much (more than 10%) from the standard deviation
of the progress rate of the all nodes are considered to
be straggler nodes in our proposed method.Since the
slow performing straggler nodes are taken as
backups,the execution of the job is expected to be
completed effectively within its deadline only with
high performance computing nodes. And hence DLT
can be applied efficiently over the nodes with high
performance. For every node in the cluster,
communication time and computation time are
calculated. The Progress rate of each node is
calculated at regular intervals with a sample data and
the variation in progress rate should be within the
limit. Based on this Probability of being Straggler
node, P is calculated and finally straggler nodes are
selected based on this P value.

4|Page

3.3.2. FAULTY NODE DETECTION

A Fault Tolerance Daemon is made to monitor the
system continuously to find the faulty nodes in the
system. It continuously monitors by communicating
with the nodes at regular intervals thus providing
instant information about the status of the nodes. For
each node, initially establish the connection and
monitor it at intervals until the total job is completed,
beyond which there is no need for monitoring i.e
fault tolerance daemon (FTD) runs until our total job
is accomplished. If incase a node completed its
assigned work, then that particular node need not be
monitored.

3.33 RE-EXECUTION ON STRAGGLER
NODES

Whenever a node is found to be faulty, the job
assigned to the faulty node is assigned to straggler
nodes taken from the straggler pool thus making sure
that the job gets completed. Previously the straggler
nodes are identified, and the other nodes are
constantly monitored. If a node is found to be faulty,
the master has to identify the split that is assigned to
the faulty node at the start of the execution, remove
the straggler nodes from the back up pool. And then
assign that split identified to the straggler nodesusing
DLT and complete the execution of the job within the

deadline constraint, without performance
degradation.
5 TFTPWITH CHECKPOINTING

In TFTP, whenever a fault occurs, the job assigned to
that faulty nodes is identified and assigned to the
backup nodes and gets re-executed. This is not
efficient in all scenarios. Consider a scenario where
in 90% of the job execution is comleted and the node
gets failed. In this case, the job has to be re-executed
completely from the beginning which causes a big
overhead. This overhead can be avoided by check
pointing the data based on the failure rate of each
node. Each node checkpoints the data at their
specified interval in the master, during the process
execution time. In case, where every node tries to
checkpoint its data at the master at same time will
create a bottleneck at the master. To avoid this
bottleneck, the nodes have to obtain a lock on the
master to checkpoints its data. Maximum number of
nodes that can be handled by the master is fixed
dynamically based on the capacity of the Master.
When there is a failure, the master identifies the last
saved data of that faulty node and assigns the
remaining job to the backup nodes. Whenever a node

checkpoints its data, previously saved data is
overwritten by the new data. Failure Rate in the
algorithm denoted by FR is based on the previous
failures of any particular node.This is maintained in a
log for future reference.The Standard Deviation(SD)

6 ALGORITHM

The three phases of Two Level Fault
Tolerant Partitioning (TFTP) are defined clearly in
this part. The feasibility of the algorithms is tested in
real-time scenarios.

Algorithm : STRAGGLER NODE
DETECTION ALGORITHM

Name : Straggler Node Detection

Input : Set of nodes, Input data set (V) , number of
nodes (n).

Output : Computation time, Communication time,
response time, Deviation rate, Set of straggler nodes.

For(each node)

/Nnitially every node is Normal node
current_node.straggler=false
//Start time of Progress
S=0
/INode processes the data
Node.send(new File("SampleFile"));
Master.receive("Result");
/[Finish time of the progress
F=CurrentTimelnMaster
/[Estimated Progress Rate
Epr=(F - S)/100

}

//Straggler Critical Time

SCT=0

/IStraggler Count

S count=0

i=0;

For(each node in the cluster)

{

/ICommunication Start Time
CST=0
Node.send(new File(""SampleFile"));
Master.receive("Result");
/ICommunication Finish Time
CFT=CurrentTimelnSlave

5|Page

is calculated based on the Failure Rates of the
nodes.Then, Checkpointing Time Interval(CTI) is
computed. For every CTI seconds, the node backsup
the data in the master.To avoid the bottle neck at the
master, a lock and release strategy has been used.

//[Communication Time

CommT=CFT-CST

//Probability of being Straggler node

P=0

//Job Start Time

JST=0

For(every 100 milliseconds && Job not done)
{

[/[Current Progress Rate

Cpr = progress rate from the node.
[IVariation in Progress Rate

Vpr = (Epr — Cpr) / Epr

P=P+ Vpr

}
/1Job Finish Time
JFT=CurrentTimelnMaster
CompT=JFT - SFT
TotalTime = (CompT + CommT)/1000
TotalTimeArray[i]=TotalTime
P_Array[i]=P
i=i+1
}
/Isort nodes based on TotalTime and P values
Fori=0Oton-1
{

For j=i+1ton

{

If(Total TimeArray[i]<Total TimeArray[j])

{

[sorting in the decreasing order of total time
Swap(TotalTimeArray[i], Total TimeArrayl[j]);
/sorting the corresponding probability value
Swap(P_Array[i],P_Array[j]);

}

[Itotal time taken by two nodes are same

Else if(Total TimeArray[i]==Total TimeArray[j])
{

//sort based on the deviation rate(P value)
If(P_Array[i]<P_Array[j])

{

Swap(TotalTimeArray[i], Total TimeArray[j]);
Swap(P_Array[i],P_Array[jl);
}

b
}

¥

/Inumber of straggler nodes dynamicallychoosen

/Ibased on the size of the data, number of total nodes

/land also based on failure rate.

S_Count= sizeof(V)/n * n/3 *n/100

Fori=1to S_Count

{

/Imaking the ith node as straggler
Node[i].straggler=true

/ladding the node to straggler pool
Straggler_pool.add(Node[i])

}

Algorithm : FAULTY NODE DETECTION

ALGORITHM

Name : Faulty Node Detection

Input : Set of Mappers and Reducers
Output : Faulty Nodes(if any)
For(each slave)

Establish the connection
For(every 1 second)

{
If(Total job completed)

Return (No need to
monitor)
If(current slave completes its job)
Break (Go for next slave)
If(connection not alive)
Report the client as faulty

}

Algorithm : RE-EXECUTION ON
STRAGGLER NODES

Name: Re-execution on stragglers

Input: Job of faulty node, Reference to Straggler pool
Output: Processed data

For(each slave)

If(fault occurred)

Identify the faulty client

6|Page

Identify the split assigned to that faulty client
Retrieve the straggler nodes from the straggler
poolAssign the split to that straggler nodes using
DLT

For(each worker node)

{

Read the split from the HDFS

/I w- word to be counted

For(each word w in the split)

{

Emitintermediate(w, (frequency==null)?1:fre
quency+1)

}

Send the result to the Reducer

}

Accumulate the results from the reducer
}
}
Algorithm : TFTPWITH

CHECKPOINTING
WORKER NODE:

Compute the failure rate of the node as FR
//SD-Standard Deviation, TI-Time Interval

5D = +/Y(mean(FR)2— TI?)

/ICheckpoint Time Interval

CTI=(Estimated Completion time /SD)*Processing
time for 1IMB data

For(every CTI seconds and Job not completed)

{
If(MasterLock> 0)

//Obtain the lock on Master
MasterLock = MasterLock — 1
Serialize the data as object
Send the Object to Master
Send the reference to remain split
/IRelease the lock on Master
MasterLock = MasterLock+ 1

}
Else
{
Continue execution
Wait for the release of lock
}

}
MASTER NODE:

For(every node in the cluster)

Allocate the memory needed for check pointing

Store the reference of the split assigned

}

For(every request)

Receive the object from the Worker nodes
Receive the corresponding reference to the split

7 PERFORMANCE EVALUATION

The simulation is carried out in HDFS (Hadoop
Distributed File System) with a cluster size of ten
nodes and varying size of Jobs. Gutenberg data set is
taken and is used to evaluate the system. The
standard size of an e-book is taken as approximately
1M. The graph in Fig 2 is plotted by varying the
number of e-books with execution time to complete
the execution of word-count of e-books. The graph in
Fig 2shows that TFTP takes a negligible additional
time compared to default HadoopMap-Reduce
system without fault. Thus even on occurrence of
faults, the jobs are completed at the near estimated
time.

70
60
50
-'—é— 40
£ 30
20
10 +——
0
0 50 100 150
No of e-books
=—4#—=MapReduce Without Fault
MapReduce With Fault
~B-TFTP With Fault
Fig2 Normal Map-reduce system VS Map-reduce
system with TFTP
24.5
24 //
Z 235
[
E 23 _é.\ /
= /'
£ 225
;o= >‘\‘.\
o
¢ s ‘,,/
[T5)
21 \i—
20.5 T T
0 20 40 60 80 100
Job Completion(%)
=4=TFTP without Checkpointing
== TFTP with Checkpointing

7|Page

Data=CurrentData
ProcessedData=0OldData+NewlyProcessedData
//Last Checkpointing Time

CPT=CurrentTime

}

Fig3 TFTP with Checkpointing VS TFTP without
Checkpointing

The graph in Fig 3 compares the TFTP without
Check pointing and TFTP with check pointing. When
fault occurs during the initial stages, the
checkpointing is inefficient compared to TFTP
without Checkpointing. But as Job proceeds, the
occurrence of fault at the later stages of job makes
this method most efficient one compared to TFTP
without Checkpointing.

The graph in Fig 3 is also plotted by varying the
number of e-books with execution time to complete
the execution of word-count of e-books. The graph in
Fig 4 is about the check pointing overhead. And it
shows that the check pointing time is very negligible.
so a Map-reduce system without fault also tend to
finish its job at the near estimated time.

45
40 -5
= 35 //.
T 5 =
S 20 /
3 15
g ~
5 7./
0 T
0 20 40 60 20 100 120
Mo of e-books
—4—MapReduce without Fault
~- MapReduce Without Fault{Checkpointing)
Fig4 Checkpointing Overhead
8 CONCLUSION

As Parallel systems like Map-Reduce systems
become increasingly prevalent, improving the fault
behavior of these systems is very important. This
paper initially proposes an algorithm TFTP for
handling faults but at times the re-execution is
considered to be a big overhead. To overcome that we
propose a check pointing strategy which is dynamic
in nature? The check pointing also has a overhead
due to the unnecessary checkpoints. But later we
proved that it is very negligible due to its dynamic
nature. Since it is negligible, it does not affect the

efficiency of the system.
REFERENCES

[1] Jeffrey Dean and Sanjay Ghemawat (2008),
‘MapReduce: Simplified Data Processing On Large
Clusters’, Communications of the ACM, Vol. 51,
Issue 1, pp. 107-113.

[2] BerlinskaJandDrozdowski M (2011), ‘Scheduling
Divisible = MapReduceComputations’,Journal ~ Of
Parallel Distributed Computing, Vol.71, Issue 3,pp.
450-459.

[3] ThilinaGunarathne, Tak-Lon Wu, Judy Qiu and
Geoffrey Fox (2010), ‘MapReduceln The Clouds For
Science’,2nd IEEE International Conference On
Cloud Computing Technology and Science, pp. 565-
572.

[4] Huan Liu and Dan Orban(2011), ‘Cloud
MapReduce: A MapReducelmplementation On Top
Of A Cloud Operating System’,International
Symposium onCluster, Cloud and Grid Computing
(CCGrid), 11th IEEE/ACM, pp. 467-47.

[5] Guanying Wang, Ali R. Butt, PrashantPandey and
Karan Gupta(2009), ‘A Simulation Approach To
Evaluating Design Decisions In MapReduce Setups’,
IEEE International Symposium on Modeling,
Analysis & Simulation of Computer and
Telecommunication Systems. MASCOTS '09, pp. 1-
11.

[6] Beaumont, H. Casanova, A. Legrand, Y. Robert
and Y. Yang (2005), ‘Scheduling Divisible Loads On
Star And Tree Networks: Results And Open
Problems’, IEEE Transactions on Parallel and
Distributed Systems, Vol. 16, Issue 3, pp. 207-218.
[7] Thomas G. Robertazzi (2003), ‘Ten Reasons To
Use Divisible Load Theory’,JEEE Journal on
Computer, Vol.36, Issue.5,pp. 63-68.

[8] SivakumarViswanathan, Bharadwaj\Veeravalli and
Thomas G Robertazzi (2007), ‘Resource-Aware
Distributed SchedulingStrategies for Large-Scale
Computational ~ Cluster/Grid Systems’, IEEE
Transactions On Parallel And Distributed Systems,
\ol.18, Issue 10, pp.1450-1461.

[9] Mamat and Anwar (2011), ‘Real-Time Divisible
Load Scheduling for Cluster Computing’, Computer
Science and Engineering: Theses, Dissertations, and
Student Research Paper 27.

[10] GaoShuai, Huang Ting-Lei and GanGuo-
Ning(2010), ‘An Improved Schedule Of MapReduce
Programming Environment In Cloud Computing’,
International Conference on Intelligent Computing
and Integrated Systems (ICISS), pp. 665-668.

[11] Qin Zheng(2010).., ‘Improving MapReduce
Fault Tolerance in the Cloud” ,IEEE conference on
parallel and distributed computing.

[12] H.T.Kung, Chit-Kwan Lin and Dario

8|Page

Vlah(Harward university), ‘Cloud Sense: Continuous
fine grain cloud monitoring with compressive
sensing’, IEEE conference on parallel and distributed
computing.

[13] Thomas C.Bressoud, Michael A.Kozuch(2009),
‘Cluster ~ Fault-Tolerance: An Experimental
Evaluation of check pointing and Map Reduce
through simulation’, Journal of cluster cloud and grid
computing.

