Dr.V.Gajendra Kumar, J. Nonlinear Anal. Optim. Vol. 13(1) (2022), January
2022

Journal of Nonlinear Analysis and Optimization
Vol. 13(1) (2022), January 2022 JNAO
https://ph03.tci-thaijjo.org/
ISSN : 1906-9685

J.Nonlinenal. Optim

Test Coverage Techniques for Closure of Gold Mine
Dr.V.Gajendra Kumar
Professor, Department of ECE
Sri Sai Institute of Technology and Science, Rayachoti
Email: gajendrakumar@gmail.com

ABSTRACT

Map-reduce is a programming model used for processing data intensive applications. More than ten thousand
distinct Map-reduce programs have been implemented internally at Google over the past four years, and an average
of one hundred thousand Map-reduce jobs are executed on Google’s clusters every day, processing a total of more
than twenty petabytes of data per day. Divisible Load Theory(DLT) is applied to the existing Map-reduce system to
increase the efficiency of the system. In this work, a new fault tolerant Map-reduce system is developed which is
applicable to static type of scheduling(DLT). This paper proposes a new algorithm —Two Level Fault Tolerant
Partitioning (TFTP) which identifies the faulty processor and re-executes the data by scheduling it to the straggler
processors. This algorithm mainly ensures the completion of the job at the nearest estimated time. And
Checkpointing along with TFTP reduces the redundancy in the system by re-executing the jobs from a saved state
rather than re-executing it from the beginning. There is some overhead in checkpointing the data. By having a
tradeoff between the Fault Probability and checkpointing interval, the efficiency of the system is improved by the
proposed method. .

Keywords: Map-Reduce, Divisible Load Theory, Fault Tolerance, Straggler, Checkpoint.

1 INTRODUCTION

Map-reduce is a programming paradigm for data intensive applications over distributed environment. User submits
the data and defines its computation as two functions, namely, Map and Reduce. Map function is typically executed
by a number of map tasks, each of which, operate simultaneously over a split of the user input data, to generate a set
of intermediate key-value pairs. The output lists of every individual mapper are hashed into a R space domain. Splits
of these intermediate results are then read as input by the corresponding reduce tasks which perform the user defined
Reduce function. Each reducer in the system takes the output list from the corresponding hash space and reduces
them into a final list of output values. Hence this framework allows parallel processing over independent partitions
of the input data by every Map task and Reduce task during the Map phase and Reduce phase respectively. This
functional model with map and reduce operations allows us to parallelize large computations easily. The input data
is split up into equal partitions and submitted to the mappers. Since each mapper has different efficiency some of the
mappers finishes its job and waits for the other mappers to complete their execution which increases the idle time of
the whole system. To increase the efficiency of the system, the split of input data should vary. Divisible Load Theory
(DLT) is used to split the data based on the capacity and efficiency of the mappers.The data is splitted up such that
all the mappers finishes their job at the same time.

Our work mainly concerns about the Fault Tolerance in a map-reduce system with Divisible Load Theory. A Fault is
generally a system failure due to overloads, power failure, and data loss etc. The occurrence of fault generally results
in either incompletion of the job or delay in completion of the job. Our work proposes a novel algorithm which
ensures the completion of the job at the estimated time. The slow performing nodes are taken as backup nodes and

l1|Page

are put up in stragglerpool(backup pool). Whenever a node becomes faulty the data given to that node is assigned to
various nodes taken from straggler pool. The number of nodes is increased to finish the job at the estimated time
thus ensuring the completion of the job very closer to the deadline.

2 RELATED WORKS

The history of research and development in the field of Map-reduce systems started with the development of
simplified data processing over large clusters[1], through the early adoption of efficient and fast search technique in
Google search engine. Map-reduce was introduced by Google in 2004.1t was later implemented as 'Cloud
MapReduce' on top of Amazon Cloud OS by Accenture Technology Labs. An open source project supporting Map-
reduce framework, by name 'HadoopMapReduce' was also developed by the Apache software foundation. Map-
reduce could be applied for different kind of jobs. A few examples are Word Count, Distributed Grep, Count of URL
Access Frequency, Reverse Web-Link Graph, Inverted Index and Distributed Sort[1]. The execution overview of
Map-reduce system is that the Job(v) is splitted and submitted to the mappers as input key-value pairs.The mappers
produce the intermediate results as intermediate key-value pairs which are then hashed into R space domain of
reducers. The Reducers then take the intermediate key value pairs and produces the actual result [1]. Divisible Load
Theory (DLT) is a framework for partitioning the divisible load into independent chunks for processing by
homogeneous nodes. The partitioning ensures fair splitting of the input data in order to optimize the schedule length.
The concept has been applied in linear algebra, image processing, video and multimedia broadcasting, database
searching and in processing of large distributed files [2]. Azure Map-reduce is runtime architecture for Map-reduce
clusters and the challenges in it includes data storage, consistency and scalability [3].With further advancements
Map-reduce is implemented on top of a cloud operating system with minimal lines of code and increased efficiency,
scalability, and speed [4]. The effect of several component inter-connect topologies, data locality, and software and
hardware failures on overall Map-reduce application performance is explored in [5] .The results of using the
proposed simulator indicate that network topology choices and scheduling decisions can have a large impact on
performance. The simulator also helps in designing new high performance Map-reduce setups and in optimizing
existing ones. The Divisible Load Theory models are categorized into different scenarios and present the
mathematical model to each scenario in [6]. Some of the classifications discussed in this work are as follows. The
application to which DLT is applied could be either star graph or tree graph model. Based on the number of rounds
DLT is used, the implementation could be of one round or multi round type. If initialization cost is involved, as is
the practical case, the model is termed to be using affine cost, else it is said to be of linear cost. Top ten reasons to
use Divisible Load Theoryare listed in [7]. The work is a premiere enlightening the advantages of DLT. Few of the
areas discussed include scalability, interconnection topologies and DLT’s optimality principle. In the later Map-
reduce era, many scheduling algorithms have been proposed. A decentralized algorithm performs intra cluster and
inter cluster (grid) job scheduling are proposed in [8]. In their work, DLT is applied along with Least Cost. A
detailed research on real time divisible load scheduling with set up costs and advance reservationsare discussed in
[9].A novel algorithm is also presented for real time divisible scheduling based on feedback control and admission
control. Various Fault Tolerant strategies are proposed in the Map-reduce system to increase the consistency of the
system and various techniques like checkpointing, Replication etc. Various Checkpointing strategies like mean
failure checkpointing, standard deviation based checkpointing are proposed in [10]. Combined fault tolerance is yet
another efficient strategy in which a tradeoff should be made between checkpointing and replication. Passive
replication is an improved fault tolerant strategy for the mapreducesystem and is discussed in [11].The heuristics to
schedule backups, move backup instances, and select backups upon failure for fast recovery is also explored in [11].
Straggler nodes have been clearly defined which contributes a lot to increase the efficiency of the system is
presented in [12]. A framework to analyze the tradeoff between communication costs and decoding accuracy is also
discussed. The various trends in check pointing the data such as coordinated check pointing, Uncoordinated or
independent check pointing are discussed in [13].

3 OVERALLARCHITECTURE

If a mapper or reducer becomes faulty, which may leadto double the time to finish the job and the cost is also
doubled. A general fault tolerant system only ensures that the job will be finished with the degraded performance. It
does not give any assurances about the deadline. To overcome this we propose a Two Level Fault Tolerant
Partitioning(TFTP) algorithm. The Architecture mainly consists of Fault Tolerance Daemon (FTD) which monitors
all the nodes in the system continuously and detects faulty nodes if any. The job given to that faulty node is
identified and is given to the set of nodes from straggler pool to ensure the completion of that job in

2|Page

theestimatedtime.The proposed architecture is shown in Fig.1. The proposed system mainly contains two major
systems such as Fault Tolerance system and map reduce system, which mainly consists of Fault Tolerance Daemon
(FTD) and scheduling module. The functionality of each module is discussed in the following paragraphs briefly.

MapReduce Svstem Fauls Tolevance Svetem

5 — —

e | 1 3
P L A

£l
SCHEDULER Famli Telerancs
PRED Drasman (FTIN
i 5 Aol onang
¥ 1: *"'. 1 Nlappars and
Ml | M s o | f Reduacers
"-g_—' b __:__'—— —_— -
H_\: L ™ -
- T .._.-'
i Y L ;
P iy N | I SCHEDULER - PRED
'....-" P o ..-,',_- "'“_
R | R | a | : Ml)

— I = ‘ TETP

Fig 1.Architecture of the proposed system

3.1 FTD

FTD is a Fault Tolerance Daemon which constantly monitors the Mappers and Reducers for the occurrence of any
fault. It constantly communicates with each node and provides the status of the node at regular intervals. If any node
fails to response, the node is assumed to be the faulty node. The failure is mainly due to various reasons like
hardware failure, communication failure, unexpected events like external power failure etc. The nodes which fail
due to any of the above reasons are called Faulty nodes.

3.2 SCHEDULER

Scheduler is responsible for scheduling the nodes in case of occurrence of faults. FTD identifies faulty nodes if any,
the information about it is passed to the scheduler. The scheduler then finds the job that was being carried out by the
faulty node. It then selects a set of nodes from the straggler pool and estimate the efficiency of each node. Divisible
Load Theory is applied over the stragglernodes. Based on the capabilities of straggler nodes, the data is splitted up
and given. Since Divisible Load Theory is applied to the straggler nodes, all the nodes complete their execution
almost at the same deadline. This scheduler can be implemented in both map and reduce phases.The Scheduler is
also responsible for scheduling multi user jobs.

3.3 TFTP

TFTP refers to Two Level Fault Tolerant Partitioning algorithm. In TFTP, a Fault Tolerance Daemon constantly
monitors the nodes.If any of the nodes become faulty during the execution of the job, the job given to those nodes
are identified and re-executed on backups with applied DLT. Only the required number stragglers nodes are used
from back up to meet out the deadline constraint as first level fault tolerant. Remaining straggler nodes in the
straggler pool are kept as backup as the second level fault tolerant if there is any failure during the execution of

3|Page

faulty jobs over straggler nodes which are selected at the first level. That is why it is named as Two Level Fault
Tolerant Partitioning (TFTP), which may be extended to any number of levels. TFTP involves three phases namely
Straggler node detection, Faulty node detection and Re-execution on backups. In the proposed system, user submits
the job (V) to the master node. Then the straggler nodes are identified and are taken as backups. The master splits
the job based on the capability of the mappers by applying the concept of Divisible Load Theory. The actual
execution takes place then. When a node is reported to be faulty by Fault Tolerance Daemon, re-execution is done on
straggler nodes present in the backups.The straggler node detection, faulty node detection, re-execution on backups
are explained in the following paragraphs.

3.3.1. STRAGGLER NODE DETECTION

The map-reduce system has many nodes associated with it and the speeds of execution of each node vary widely
(some of them are too fast while the other are slow performing).The slow performing nodes which are called as
straggler nodes has to be excluded from the system to make it efficient and the excluded nodes can be used as
backup nodes that can be used in case of any node failure. These straggler nodes have to be detected before the start
of any process. The straggler nodes are slow performing both in computation and communication time. The total
time for execution includes computation and communication time. Higher the total time, slower the performance.
Hence the total time of execution plays a major role in the selection of straggler node. These nodes vary greatly in
the performance. Forexample consider a node, counting number of words in a file. The progress rate of each node
should be monitored at certain intervals and they should not vary widely. The nodes whose progress rate varies
much (more than 10%) from the standard deviation of the progress rate of the all nodes are considered to be
straggler nodes in our proposed method.Since the slow performing straggler nodes are taken as backups,the
execution of the job is expected to be completed effectively within its deadline only with high performance
computing nodes. And hence DLT can be applied efficiently over the nodes with high performance. For every node
in the cluster, communication time and computation time are calculated. The Progress rate of each node is calculated
at regular intervals with a sample data and the variation in progress rate should be within the limit. Based on this
Probability of being Straggler node, P is calculated and finally straggler nodes are selected based on this P value.

3.3.2. FAULTY NODE DETECTION

A Fault Tolerance Daemon is made to monitor the system continuously to find the faulty nodes in the system. It
continuously monitors by communicating with the nodes at regular intervals thus providing instant information
about the status of the nodes. For each node, initially establish the connection and monitor it at intervals until the
total job is completed, beyond which there is no need for monitoring i.e fault tolerance daemon (FTD) runs until our
total job is accomplished. If incase a node completed its assigned work, then that particular node need not be
monitored.

3.3.3 RE-EXECUTION ON STRAGGLER NODES

Whenever a node is found to be faulty, the job assigned to the faulty node is assigned to straggler nodes taken from
the straggler pool thus making sure that the job gets completed. Previously the straggler nodes are identified, and the
other nodes are constantly monitored. If a node is found to be faulty, the master has to identify the split that is
assigned to the faulty node at the start of the execution, remove the straggler nodes from the back up pool. And then
assign that split identified to the straggler nodesusing DLT and complete the execution of the job within the deadline
constraint, without performance degradation.

5 TFTPWITH CHECKPOINTING

In TFTP, whenever a fault occurs, the job assigned to that faulty nodes is identified and assigned to the backup
nodes and gets re-executed. This is not efficient in all scenarios. Consider a scenario where in 90% of the job
execution is comleted and the node gets failed. In this case, the job has to be re-executed completely from the
beginning which causes a big overhead. This overhead can be avoided by check pointing the data based on the
failure rate of each node. Each node checkpoints the data at their specified interval in the master, during the process
execution time. In case, where every node tries to checkpoint its data at the master at same time will create a
bottleneck at the master. To avoid this bottleneck, the nodes have to obtain a lock on the master to checkpoints its
data. Maximum number of nodes that can be handled by the master is fixed dynamically based on the capacity of the

4|Page

Master. When there is a failure, the master identifies the last saved data of that faulty node and assigns the remaining
job to the backup nodes. Whenever a node checkpoints its data, previously saved data is overwritten by the new
data. Failure Rate in the algorithm denoted by FR is based on the previous failures of any particular node.This is
maintained in a log for future reference.The Standard Deviation(SD) is calculated based on the Failure Rates of the
nodes.Then, Checkpointing Time Interval(CTI) is computed. For every CTI seconds, the node backsup the data in
the master.To avoid the bottle neck at the master, a lock and release strategy has been used.

6 ALGORITHM

The three phases of Two Level Fault Tolerant Partitioning (TFTP) are defined clearly in this part. The
feasibility of the algorithms is tested in real-time scenarios.

Algorithm : STRAGGLER NODE DETECTION ALGORITHM

Name : Straggler Node Detection

Input : Set of nodes, Input data set (V) , number of nodes (n).

Output : Computation time, Communication time, response time, Deviation rate, Set of straggler nodes.
For(each node)

llInitially every node is Normal node
current_node.straggler=false
/[Start time of Progress
S=0
/INode processes the data
Node.send(new File("SampleFile™));
Master.receive("Result");
/[Finish time of the progress
F=CurrentTimelnMaster
/[Estimated Progress Rate
Epr=(F - S)/100

}

/IStraggler Critical Time

SCT=0

/IStraggler Count

S count=0

i=0;

For(each node in the cluster)

{

/ICommunication Start Time
CST=0 Node.send(new File("SampleFile™));
Master.receive("Result");
/I[Communication Finish Time
CFT=CurrentTimelnSlave
/I[Communication Time
CommT=CFT-CST
/[Probability of being Straggler node
P=0
/1Job Start Time

5|Page

JST=0
{

/[Current Progress Rate

Cpr = progress rate from the node.
[/[Variation in Progress Rate

Vpr = (Epr — Cpr) / Epr

}
/1Job Finish Time
JFT=CurrentTimelnMaster
TotalTime = (CompT + CommT)/1000
TotalTimeArray[i]=TotalTime
P_Array[i]=P
i=i+1
}
/Isort nodes based on TotalTime and P values
For i=0to n-1
{

For j=i+1ton

If(TotalTimeArray[i]<Total TimeArray[j])

{

/Isorting in the decreasing order of total time
Swap(TotalTimeArray[i], Total TimeArray[j]);
/Isorting the corresponding probability value
Swap(P_Array[i],P_Array[j]);

}

[Itotal time taken by two nodes are same

Else if(Total TimeArray[i]==Total TimeArray[j])
{

/Isort based on the deviation rate(P value)
If(P_Array[i]<P_Array[j])

{

Swap(TotalTimeArray[i], Total TimeArray[j]);
Swap(P_Array[i],P_Array[j]);
}

¥
by
¥

/Inumber of straggler nodes dynamicallychoosen

/Ibased on the size of the data, number of total nodes

/land also based on failure rate.

S_Count=sizeof(V)/n * n/3 *n/100

Fori=1to S_Count

{

/Imaking the ith node as straggler
Node[i].straggler=true

/ladding the node to straggler pool
Straggler_pool.add(Node[i])

}

6|Page

For(every 100 milliseconds && Job not done)

P=P+Vpr

CompT=JFT - SFT

Algorithm : FAULTY NODE DETECTION ALGORITHM
Name : Faulty Node Detection

Input : Set of Mappers and Reducers

Output : Faulty Nodes(if any)

For(each slave)

Establish the connection
For(every 1 second)

If(Total job completed)

Return (No need to monitor)
If(current slave completes its job)

Break (Go for next slave)
If(connection not alive)

Report the client as faulty

}

Algorithm : RE-EXECUTION ON STRAGGLER NODES
Name: Re-execution on stragglers

Input: Job of faulty node, Reference to Straggler pool

Output: Processed data

For(each slave)

If(fault occurred)
{
Identify the faulty client
Identify the split assigned to that faulty client
Retrieve the straggler nodes from the straggler poolAssign the split to that straggler nodes using DLT
For(each worker node)
{
Read the split from the HDFS
// w- word to be counted
For(each word w in the split)
EmitIntermediate(w, (frequency==null)?1:frequency+1)
}

Send the result to the Reducer

¥

Accumulate the results from the reducer

¥
¥

Algorithm : TFTPWITH CHECKPOINTING
WORKER NODE:

Compute the failure rate of the node as FR

7|Page

//SD-Standard Deviation, TI-Time Interval

5D = /Y (mean(FR)*—TI?)

/ICheckpoint Time Interval

CTI=(Estimated Completion time /SD)*Processing time for 1MB data

For(every CTI seconds and Job not completed)

{
If(MasterLock> 0)
//Obtain the lock on Master
MasterLock = MasterLock — 1 Serialize the data as object
Send the Object to Master
Send the reference to remain split
/IRelease the lock on Master
MasterLock = MasterLock+ 1
}
Else
{
Continue execution
Wait for the release of lock
}
}

MASTER NODE:

For(every node in the cluster)

{

Allocate the memory needed for check pointing
Store the reference of the split assigned

}

For(every request)

Receive the object from the Worker nodes
Receive the corresponding reference to the split
Data=CurrentData
ProcessedData=OldData+NewlyProcessedData
/ILast Checkpointing Time

CPT=CurrentTime

}

7 PERFORMANCE EVALUATION

The simulation is carried out in HDFS (Hadoop Distributed File System) with a cluster size of ten nodes and varying
size of Jobs. Gutenberg data set is taken and is used to evaluate the system. The standard size of an e-book is taken
as approximately 1M. The graph in Fig 2 is plotted by varying the number of e-books with execution time to
complete the execution of word-count of e-books. The graph in Fig 2shows that TFTP takes a negligible additional
time compared to default HadoopMap-Reduce system without fault. Thus even on occurrence of faults, the jobs are
completed at the near estimated time.

8|Page

70
60
50
TE. 40 -
E 30
20
10
D T T 1
0 50 100 150
No of e-books
—#—MapReduce Without Fault
MapReduce With Fault
~B-TFTP With Fault
Fig2 Normal Map-reduce system VS Map-reduce system with TFTP
245
.
24
Z s //
E 23 éi\
= /
£ 225
g 22 >‘\
")
S 215 ,/
d
21 \i—
20.5 . : : : |
0 20 40 60 80 100

Jobh Completion(%)

=#=TFTP without Checkpointing

== TFTP with Checkpointing

Fig3 TFTP with Checkpointing VS TFTP without Checkpointing

The graph in Fig 3 compares the TFTP without Check pointing and TFTP with check pointing. When fault occurs
during the initial stages, the checkpointing is inefficient compared to TFTP without Checkpointing. But as Job

proceeds, the occurrence of fault at the later stages of job makes this method most efficient one compared to TFTP
without Checkpointing.

The graph in Fig 3 is also plotted by varying the number of e-books with execution time to complete the execution
of word-count of e-books. The graph in Fig 4 is about the check pointing overhead. And it shows that the check

pointing time is very negligible. so a Map-reduce system without fault also tend to finish its job at the near estimated
time.

o -
35 "
80 =

25 =
i‘: i

10 ~

Execution Time(s)

0 20 40 60 80 100 120
No of e-books
=#—MapReduce without Fault

== MapReduce Without Fault(Checkpointing)

Fig4 Checkpointing Overhead

9|Page

8 CONCLUSION

As Parallel systems like Map-Reduce systems become increasingly prevalent, improving the fault behavior of these
systems is very important. This paper initially proposes an algorithm TFTP for handling faults but at times the re-
execution is considered to be a big overhead. To overcome that we propose a check pointing strategy which is
dynamic in nature? The check pointing also has a overhead due to the unnecessary checkpoints. But later we proved
that it is very negligible due to its dynamic nature. Since it is negligible, it does not affect the efficiency of the
system.

REFERENCES

[1] Jeffrey Dean and Sanjay Ghemawat (2008), ‘MapReduce: Simplified Data Processing On Large Clusters’,
Communications of the ACM, \Vol. 51, Issue 1, pp. 107-113.

[2] BerlinskaJandDrozdowski M (2011), ‘Scheduling Divisible MapReduceComputations’,Journal Of Parallel
Distributed Computing, Vol.71, Issue 3,pp. 450-459.

[3] ThilinaGunarathne, Tak-Lon Wu, Judy Qiu and Geoffrey Fox (2010), ‘MapReduceln The Clouds For
Science’,2nd IEEE International Conference On Cloud Computing Technology and Science, pp. 565-572.

[4] Huan Liu and Dan Orban(2011), ‘Cloud MapReduce: A MapReducelmplementation On Top Of A Cloud
Operating System’,International Symposium onCluster, Cloud and Grid Computing (CCGrid), 11th IEEE/ACM, pp.
467-47.

[5] Guanying Wang, Ali R. Butt, PrashantPandey and Karan Gupta(2009), ‘A Simulation Approach To Evaluating
Design Decisions In MapReduce Setups’, IEEE International Symposium on Modeling, Analysis & Simulation of
Computer and Telecommunication Systems. MASCOTS ‘09, pp. 1-11.

[6] Beaumont, H. Casanova, A. Legrand, Y. Robert and Y. Yang (2005), ‘Scheduling Divisible Loads On Star And
Tree Networks: Results And Open Problems’, IEEE Transactions on Parallel and Distributed Systems, Vol. 16, Issue
3, pp. 207-218.

[7] Thomas G. Robertazzi (2003), ‘Ten Reasons To Use Divisible Load Theory’,IEEE Journal on Computer, Vol.36,
Issue.5,pp. 63-68.

[8] SivakumarViswanathan, BharadwajVeeravalli and Thomas G. Robertazzi (2007), ‘Resource-Aware Distributed
SchedulingStrategies for Large-Scale Computational Cluster/Grid Systems’, IEEE Transactions On Parallel And
Distributed Systems, \Vol.18, Issue 10, pp.1450-1461.

[9] Mamat and Anwar (2011), ‘Real-Time Divisible Load Scheduling for Cluster Computing’, Computer Science
and Engineering: Theses, Dissertations, and Student Research Paper 27.

[10] GaoShuai, Huang Ting-Lei and GanGuo-Ning(2010), ‘An Improved Schedule Of MapReduce Programming
Environment In Cloud Computing’, International Conference on Intelligent Computing and Integrated Systems
(ICISS), pp. 665-668.

[11] Qin Zheng(2010).., ‘Improving MapReduce Fault Tolerance in the Cloud’ ,IEEE conference on parallel and
distributed computing.

[12] H.T.Kung, Chit-Kwan Lin and Dario Vlah(Harward university), ‘Cloud Sense: Continuous fine grain cloud
monitoring with compressive sensing’, IEEE conference on parallel and distributed computing.

[13] Thomas C.Bressoud, Michael A.Kozuch(2009), ‘Cluster Fault-Tolerance: An Experimental Evaluation of check
pointing and Map Reduce through simulation’, Journal of cluster cloud and grid computing.

10|Page

